2. Cenário de Planejamento

Esse capítulo aborda os principais temas envolvidos no planejamento de recursos hídricos, envolvendo aqueles relativos à dinâmica socioeconômica, às demandas e disponibilidades de água e sua qualidade e às condições de saneamento.

Nesse cenário foram considerados os 33 (trinta e três) municípios integrantes da UGRHI-10, conforme consta do Anexo 2 da Lei nº 16.337, de 14 de dezembro de 2016, que dispõe sobre o Plano Estadual de Recursos Hídricos – PERH.

O município de Salto, que integra a UGRHI-05 (Piracicaba, Capivari, Jundiaí), foi considerado nesse cenário, tendo em vista que os efluentes domésticos gerados na área urbana são lançados no rio Tietê, no trecho inserido na UGRHI-10. A Prefeitura de Salto tem representação no Comitê da Bacia Hidrográfica do Sorocaba/Médio Tietê.

Também o município de São Manuel (UGRHI 13-Tietê/Jacaré) tem representação nesse colegiado. No entanto, considerando que apenas uma pequena porção da área rural desse município está inserida na UGRHI-10, os dados relativos a esse município não foram sistematizados para compor o cenário deste Plano de Bacia Hidrográfica.

2.1 Dinâmica Socioeconômica

a) Projeção populacional

A projeção populacional é uma ferramenta essencial para subsidiar os processos de planejamento. No âmbito dos planos de recursos hídricos fornecem as bases para as projeções das diferentes demandas que o integram, com reflexos na qualidade e quantidade dos Recursos Hídricos da UGRHI.

As projeções populacionais apresentadas neste relatório para os municípios da UGRHI-10 foram baseadas nos dados disponibilizados pelo Sistema SEADE de Projeções Populacionais¹.Foram selecionados os dados relativos aos anos de 2016 (início do Plano), 2020, 2025 e 2030 (fim do Plano).

A **Tabela 2.1-1** apresenta as projeções da população para o total da UGRHI-10, para os anos selecionados, com base nos dados disponibilizados pela Fundação SEADE (2017).

Tabela 2.1-1 Projeção Populacional UGRHI-10 (2016-2030)

Ano	População Urbana	População Rural	População Total
7	(habitantes)	(habitantes)	(habitantes)
2016	1.884.566	207.369	2.091.935
2020	1.972.560	207.986	2.180.546
2025	2.061.593	208.167	2.269.760
2030	2.126.559	207.212	2.333.771

Fonte: adaptado de SEADE,2017

¹ Disponível em: http://produtos.seade.gov.br/produtos/projpop/. Acesso em: out. 2017.

Verifica-se que no horizonte projetado a população total da UGRHI supera o montante de 2,3 milhões de habitantes. A população urbana apresenta uma tendência de crescimento no período analisado, enquanto que a população rural deverá ter um declínio no período de 2025 a 2030. A evolução populacional na UGRHI em questão pode ser visualizada na **Figura 2.1-1**.

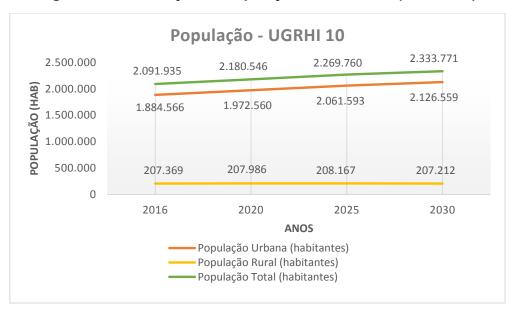


Figura 2.1-1 - Evolução da População na UGRHI-10 (2016-2030)

De forma a melhor detalhar a dinâmica populacional são apresentados os dados por município que foram agrupados levando-se em conta as unidades de planejamento as sub-bacias que integram a UGRHI-10, quais sejam: Sub-Bacia1 - Médio Tietê Inferior; Sub-Bacia2 - Médio Tietê Médio; Sub-Bacia3 - Baixo Sorocaba; Sub-Bacia4 - Médio Sorocaba; Sub-Bacia5 - Médio Tietê Superior; e, Sub-Bacia6 - Alto Sorocaba.

As tabelas **2.1-2** a **2.1-7** contém os dados relativos às projeções das populações urbana, rural e total dos municípios, distribuídos por suas respectivas sub-bacias.

Na sub-bacia do Médio Tietê Inferior destaca-se o Município de Botucatu que contribui com mais de 70% da população total. O município de Porangaba, que abriga o menor contingente populacional nessa unidade de planejamento, se destaca por possuir uma população rural superior à população urbana.

A população dos municípios da sub-bacia do Médio Tietê Médio distribui-se de forma equilibrada, com exceção de Jumirim (antigo Distrito de Tietê) que contribui com menos de 2% do população total dessa sub-bacia.

O Município de Tatuí contribui com cerca de 40% da população da sub-bacia do Baixo Sorocaba. Dos nove municípios que a integram, dois deverão ter uma população total inferior a 10.000 habitantes, em 2.030 (Alambari e Quadra).

A sub-bacia do Médio Sorocaba concentra a maior população da UGRHI. O município de Sorocaba, inserido nessa sub-bacia, abriga uma população expressiva e se configura como um polo de desenvolvimento regional, abrigando um grande número de indústrias e de estabelecimentos comerciais e de serviços.

O município de Votorantim (com o segundo contingente populacional do Médio Sorocaba) encontra-se conturbado ao município de Sorocaba, e esses dois municípios, juntos, respondem por cerca de 85% da população desta sub-bacia.

Na sub-bacia do Médio Tietê Superior destacam-se os municípios de Tietê e Salto. Conforme anteriormente apontado o município de Salto é integrante da UGRHI-05 nos termos da Lei nº 16.337/2016. No entanto, esse município, além de ter porções das áreas urbana e rural inseridas na UGRHI-10, lança os efluentes gerados na sua área urbana no rio Tietê no trecho inserido na bacia do Sorocaba/Médio Tietê.

O município de Araçariguama, também integrante dessa sub-bacia tem toda a sua população concentrada na área urbana.

Apenas os municípios de Ibiúna e Vargem Grande Paulista integram a sub-bacia do Alto Sorocaba. Neste último toda a população encontra-se em área urbana, considerando que de acordo com Lei Complementar nº 14/2003, que instituiu o Plano Diretor, considera toda a área do município como urbana.

Tabela 2.1-2 Projeção Populacional Sub-Bacia Médio Tietê Inferior

Sub-Ba	acia	Munícipio		2016			2020			2025			2030	
Nome	Sigla	Widnicipio	Urbana	Rural	Total									
		Anhembi	4.860	1.409	6.269	5.256	1.416	6.672	5.698	1.402	7.100	6.079	1.366	7.445
	Bofete		6.702	3.810	10.512	7.062	4.014	11.076	7.447	4.233	11.680	7.728	4.393	12.121
	В		131.367	4.724	136.091	136.396	4.739	141.135	141.280	4.705	145.985	144.763	4.624	149.387
Médio Tietê Inferior	SB1-MTI	Conchas	14.069	2.730	16.799	14.628	2.506	17.134	15.244	2.239	17.483	15.751	1.987	17.738
micrio		Pereiras	5.380	2.676	8.056	5.628	2.800	8.428	5.897	2.933	8.830	6.071	3.020	9.091
		Porangaba	4.316	4.623	8.939	4.495	4.815	9.310	4.667	5.000	9.667	4.780	5.120	9.900
To		Torre de Pedra	1.579	714	2.293	1.651	669	2.320	1.733	612	2.345	1.803	555	2.358
	Subtotal 1			20.686	188.959	175.116	20.959	196.075	181.966	21.124	203.090	187.065	21.065	208.040

Fonte: adaptado de SEADE, 2017.

Tabela 2.1-3 Projeção Populacional Sub-Bacia Médio Tietê Médio

Sub-B	acia	Município		2016			2020			2025			2030	
Nome	Sigla	Widilicipio	Urbana	Rural	Total									
		Boituva	50.813	3.204	54.017	53.893	3.399	57.292	57.240	3.610	60.850	59.676	3.763	63.439
		Cerquilho	41.675	2.274	43.949	44.009	2.402	46.411	46.535	2.539	49.074	48.538	2.649	51.187
Médio Tietê Médio	SB2-MTM	Jumirim	1.958	1.162	3.120	2.175	1.131	3.306	2.423	1.070	3.493	2.649	992	3.641
Medio		Porto Feliz	43.490	7.117	50.607	45.016	6.681	51.697	46.628	6.130	52.758	47.840	5.578	53.418
	Tie		35.958	3.473	39.431	37.528	3.545	41.073	39.162	3.597	42.759	40.456	3.614	44.070
	Subtotal 2		173.894	17.230	191.124	182.621	17.158	199.779	191.988	16.946	208.934	199.159	16.596	215.755

Fonte: adaptado de SEADE, 2017.

Tabela 2.1-4 Projeção Populacional Sub-Bacia Baixo Sorocaba

Sub-Ba	acia	Município		2016			2020			2025			2030	
Nome	Sigla	- Município	Urbana	Rural	Total									
		Alambari	4.307	1.119	5.426	4.729	1.050	5.779	5.224	953	6.177	5.645	849	6.494
	Capela do		16.462	2.842	19.304	17.817	2.725	20.542	19.447	2.561	22.008	20.892	2.374	23.266
	Cesário Lange		11.248	5.411	16.659	11.645	5.603	17.248	12.027	5.787	17.814	12.299	5.917	18.216
Laranjal F		Laranjal Paulista	24.193	2.637	26.830	25.207	2.627	27.834	26.297	2.590	28.887	27.141	2.528	29.669
Baixo Sorocaba	SB3-BS	Piedade	24.617	28.310	52.927	25.239	28.297	53.536	25.952	28.190	54.142	26.561	27.952	54.513
COTOCADA		Quadra	909	2.617	3.526	960	2.748	3.708	1.014	2.878	3.892	1.060	2.984	4.044
		Salto de Pirapora	33.523	9.133	42.656	34.810	9.413	44.223	36.076	9.665	45.741	36.995	9.818	46.813
	Sarapuí		7.535	2.140	9.675	8.130	1.980	10.110	8.827	1.776	10.603	9.428	1.571	10.999
Tatuí		Tatuí	111.079	3.970	115.049	116.699	3.424	120.123	122.725	2.891	125.616	127.519	2.490	130.009
	Subtotal 3			58.179	292.052	245.236	57.867	303.103	257.589	57.291	314.880	267.540	56.483	324.023
Fonte: adaptado o	40 CEVDE 30	17												

Fonte: adaptado de SEADE, 2017

Tabela 2.1-5 Projeção Populacional Sub-Bacia Médio Sorocaba

Sub-Ba	acia	Município		2016			2020			2025			2030	
Nome	Sigla	wunicipio	Urbana	Rural	Total									
		Alumínio	14.698	2.827	17.525	15.073	2.899	17.972	15.483	2.978	18.461	15.832	3.045	18.877
	Araçoiaba da Se		20.887	9.501	30.388	22.263	10.127	32.390	23.873	10.859	34.732	25.110	11.422	36.532
Médio	CD4 MC	Iperó	19.794	12.283	32.077	21.197	13.155	34.352	22.615	14.034	36.649	23.711	14.715	38.426
Sorocaba	SB4-MS	Mairinque	36.236	8.913	45.149	37.178	9.145	46.323	38.177	9.391	47.568	38.869	9.561	48.430
		Sorocaba	624.133	6.417	630.550	651.845	6.702	658.547	677.952	6.970	684.922	694.431	7.140	701.571
		Votorantim	111.090	4.405	115.495	115.254	4.570	119.824	119.343	4.732	124.075	122.417	4.854	127.271
	Subtotal 4			44.346	871.184	862.810	46.598	909.408	897.443	48.964	946.407	920.370	50.737	971.107

Fonte: adaptado de SEADE, 2017

Tabela 2.1-6 Projeção Populacional – Sub-Bacia Médio Tietê Superior

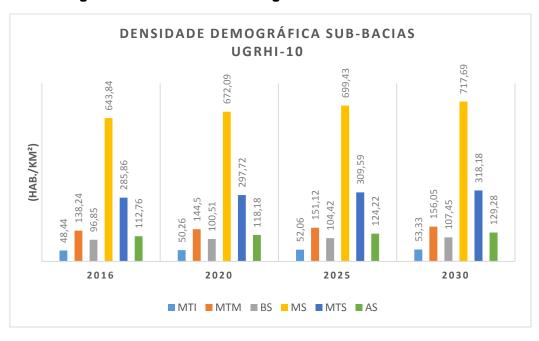
Sub-Ba	acia	Município		2016			2020			2025			2030	
Nome	Sigla	Municipio	Urbana	Rural	Total									
		Araçariguama	19.493	-	19.493	20.980	-	20.980	22.573	-	22.573	23.850	-	23.850
		Cabreúva	40.695	5.611	46.306	44.288	5.142	49.430	48.372	4.563	52.935	51.849	4.012	55.861
Médio Tietê Superior	SB5-MTS	Itu	154.843	8.932	163.775	161.437	8.335	169.772	168.094	7.587	175.681	172.872	6.856	179.728
Ouperior		Salto	110.708	784	111.492	114.561	811	115.372	118.163	837	119.000	120.804	856	121.660
	São Roque		80.172	4.109	84.281	84.550	2.885	87.435	88.481	1.982	90.463	90.836	1.493	92.329
	Subtotal 5			19.436	425.347	425.816	17.173	442.989	445.683	14.969	460.652	460.211	13.217	473.428

Fonte: adaptado de SEADE, 2017

Tabela 2.1-7 Projeção Populacional Sub-Bacia Alto Sorocaba

Sub-Bac	cia	Município		2016			2020			2025			2030	
Nome	Sigla	Mullicipio	Urbana	Rural	Total									
Alto	SB6-	Ibiúna	26.872	47.492	74.364	28.199	48.231	76.430	29.768	48.873	78.641	31.164	49.114	80.278
Sorocaba	orocaba AS Vargem Grande Paulista		48.905	-	48.905	52.762	-	52.762	57.156	-	57.156	61.050	-	61.050
	Subtotal 6		75.777	47.492	123.269	80.961	48.231	129.192	86.924	48.873	135.797	92.214	49.114	141.328

Fonte: adaptado de SEADE, 2017


b) Densidade Demográfica

Para a projeção das densidades demográficas foram utilizadas as áreas dos municípios disponibilizadas pelo CRHi para a elaboração dos relatórios de situação 2017. No **Quadro 2.1-1** são apresentadas as densidades demográficas da UGRHI-10 e das suas sub-bacias (**Figura 2.1-2**). A evolução dessas densidades na UGRHI-10pode ser visualizada na **Figura 2.1-3**.

Quadro 2.1-1 – Projeção das Densidade Demográficas UGRHI-10 e Sub-Bacias

Sub-Bacias	D	ensidade I (hab.	Demográfic /km²)	а					
	2016	2020	2025	2030					
SB1-MTI	48,44	50,26	52,06	53,33					
SB2-MTM	138,24	144,5	151,12	156,05					
SB3-BS	96,85	100,51	104,42	107,45					
SB4-MS	643,84	672,09	699,43	717,69					
SB5-MTS	285,86	297,72	309,59	318,18					
SB6-AS	112,76 118,18 124,22 129,28								
UGRHI-10	171,00	178,25	185,54	190,77					

Figura 2.1-2 Densidade Demográfica Sub-Bacias UGRHI-10

Evolução da Densidade Demográfica UGRHI 10 195,00 190,77 190,00 185,54 185,00 (hab./km²) 178,25 180,00 175,00 171,00 170,00 165,00 160,00 2016 2020 2025 2030 Ano

Figura 2.1-3 Evolução da Densidade Demográfica na UGRHI-10

Os **Quadros 2.1-2** a **2.1-7**, a seguir, contêm a projeção das densidades demográficas dos municípios que integram a UGRHI-10, agrupados por sub-bacia.

Quadro 2.1-2 – Projeção das Densidade Demográficas Sub-Bacia Médio Tietê Inferior

Sub	-Bacia	Município	Área		ensidade [(hab	Demográfic ./km²)	а
Nome	Sigla	•	(km²)	2016	2020	2025	2030
		Anhembi	736,46	8,51	9,06	9,64	10,11
		Bofete	653,36	16,09	16,95	17,88	18,55
Médio		Botucatu	1.482,87	91,78	95,18	98,45	100,74
Tietê	SB1-MTI	Conchas	468,24	35,88	36,59	37,34	37,88
Inferior		Pereiras	222,16	36,26	37,94	39,75	40,92
		Porangaba	266,57	33,53	34,93	36,26	37,14
		Torre de Pedra	71,30	32,16	32,54	32,89	33,07
	SB1-MTI		3.900,96	48,44	50,26	52,06	53,33

Quadro 2.1-3 – Projeção das Densidade Demográficas Sub-Bacia Médio Tietê Médio

Sub	-Bacia	Município	Área		ensidade I (hab	Demográfic ./km²)	а
Nome	Sigla	·	(km²)	2016	2020	2025	2030
		Boituva	249,01	216,93	230,08	244,37	254,76
Médio		Cerquilho	127,76	344,00	363,27	384,11	400,65
Tietê	SB2-MTM	Jumirim	56,74	54,99	58,27	61,56	64,17
Médio		Porto Feliz	556,56	90,93	92,89	94,79	95,98
		Tietê	392,51	100,46	104,64	108,94	112,28
	SB2-MTM		1.382,58	138,24	144,50	151,12	156,05

Quadro 2.1-4 – Projeção das Densidade Demográficas Sub-Bacia Baixo Sorocaba

Sub-B	acia	Município	Área	De	ensidade D (hab.	emográfic /km²)	a
Nome	Sigla		(km²)	2016	2020	2025	2030
		Alambari	159,19	34,09	36,30	38,80	40,79
		Capela do Alto	169,98	113,57	120,85	129,47	136,87
		Cesário Lange	190,19	87,59	90,69	93,66	95,78
Deim	Daine	Laranjal Paulista	386,76	69,37	71,97	74,69	76,71
Baixo Sorocaba	SB3-BS	Piedade	745,54	70,99	71,81	72,62	73,12
Corocaba		Quadra	205,03	17,20	18,09	18,98	19,72
		Salto de Pirapora	280,31	152,17	157,76	163,18	167,00
		Sarapuí	354,46	27,30	28,52	29,91	31,03
		Tatuí	524,16	219,49	229,17	239,65	248,03
	SB3-BS			96,85	100,51	104,42	107,45

Quadro 2.1-5 – Projeção das Densidade Demográficas Sub-Bacia Médio Sorocaba

Sub-B	Bacia	Município	Área	D		Demográfic ./km²)	a
Nome	Sigla		(km²)	2016	2020	2025	2030
		Alumínio	83,74	209,28	214,62	220,46	225,42
		Araçoiaba da Serra	255,55	118,91	126,75	135,91	142,95
Médio	dio SB4-MS	Iperó	170,94	187,65	200,96	214,40	224,79
Sorocaba	304-1813	Mairinque	209,76	215,24	220,84	226,77	230,88
		Sorocaba	449,12	1.403,97	1.466,31	1.525,03	1.562,10
	Votora		184,00	627,69	651,22	674,32	691,69
	SB4-MS		1.353,11	643,84	672,09	699,43	717,69

Quadro 2.1-6 – Projeção das Densidade Demográficas Sub-Bacia Médio Tietê Inferior Superior

Sub-Bacia		Município	Área	Densidade Demográfica (hab./km²)			
Nome	Sigla	·	(km²)	2016	2020	2025	2030
		Araçariguama	146,33	133,21	143,37	154,26	162,99
Médio		Cabreúva	259,81	178,23	190,25	203,75	215,01
Tietê	SB5-MTS	Itu	639,98	255,91	265,28	274,51	280,83
Superior		Salto	134,26	830,42	859,32	886,34	67,71
		São Roque	307,55	274,04	284,30	294,14	300,21
SB5-MTS		1.487,93	285,86	297,72	309,59	318,18	

Quadro 2.1-7 – Projeção das Densidade Demográficas Sub-Bacia Alto Sorocaba

Sub-Bacia		Município	Área	Densidade Demográfica (hab./km²)			
Nome	Sigla		(km²)	2016	2020	2025	2030
Alto	SB6-AS	Ibiúna	1.059,69	70,18	72,12	74,21	75,76
Sorocaba SB6-AS		Vargem Grande Paulista	33,51	1.459,42	1.574,52	1.705,64	1.821,84
SB6-AS		1.093,20	112,76	118,18	124,22	129,28	

c) Taxa de Urbanização

Na grande maioria dos municípios da UGRHI-10 a população urbana supera a população rural. Do **Quadro 2.1-8** consta a evolução das taxas de urbanização desta UGRHI e de suas sub-bacias, no período considerado.

Para o total da UGRHI-10 as taxas de urbanização mostraram-se superiores a 90% em todo o período analisado. Observa-se também essa tendência na maior parte dessas sub-bacias.

Quadro 2.1-8 Taxas de Urbanização UGRHI-10 e Sub-Bacias

Sub-Bacia	Ta	Taxa de Urbanização (%)					
Sub-Dacia	2016	2020	2025	2030			
SB1-MTI	89,05	89,31	89,60	89,87			
SB2-MTM	90,98	91,41	91,89	92,31			
SB3-BS	80,08	80,91	81,81	82,57			
SB4-MS	94,91	94,88	94,83	94,78			
SB5-MTS	95,43	96,12	96,75	97,21			
SB6-AS	61,47	62,67	64,01	65,25			
UGRHI-10	90,09	90,46	90,83	91,12			

As **Figuras 2.1-4** e **2.1-5** ilustram as taxas de urbanização do total da UGRHI-10 e das sub-bacias que a integram, respectivamente, no período de 2016-2030.

Figura 2.1-4 Evolução das Taxas de Urbanização na UGRHI-10

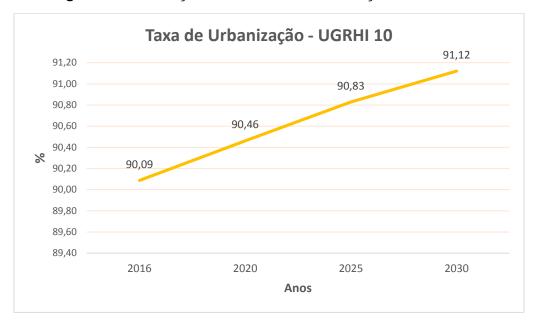
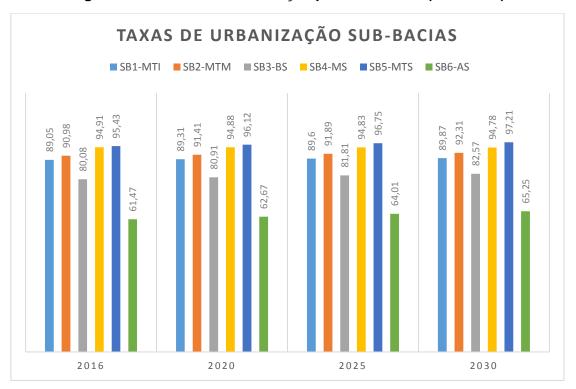



Figura 2.1-5 Taxas de Urbanização por Sub-Bacias (UGRHI-10)

Nos **Quadros 2.1-9** a **2.1-14**, a seguir, estão discriminadas as taxas de urbanização dos municípios que integram a UGHR-10, distribuídos em suas respectivas sub-bacias.

Quadro 2.1-9 Taxas de Urbanização Sub-Bacia do Médio Tietê Inferior

Sub-Ba	Sub-Bacia		Anos			
Nome	Sigla	- Município -	2016	2020	2025	2030
		Anhembi	77,52	78,78	80,25	81,65
		Bofete	63,76	63,76	63,76	63,76
	SB1-MTI	Botucatu	96,53	96,64	96,78	96,90
Médio Tietê Inferior		Conchas	83,75	85,37	87,19	88,80
		Pereiras	66,78	66,78	66,78	66,78
		Porangaba	48,28	48,28	48,28	48,28
		Torre de Pedra	68,86	71,16	73,90	76,46
	SB1-MTI		89,05	89,31	89,60	89,87

O município de Botucatu possui as maiores taxas de urbanização no Médio Tietê Inferior, observando-se que esse município também concentra o maior contingente populacional da sub-bacia.

Nos municípios de Bofete, Pereiras e Porangaba as taxas de urbanização mostraramse constantes no período considerado.

Quadro 2.1-10 Taxas de Urbanização Sub-Bacia do Médio Tietê Médio

Sub-Bacia		Município	Anos			
Nome	Sigla	Municipio	2016	2020	2025	2030
		Boituva	94,07	94,07	94,07	94,07
Mádia Tiatâ	SB2-MTM	Cerquilho	94,83	94,82	94,83	94,82
Médio Tietê Médio		Jumirim	62,76	65,79	69,37	72,75
		Porto Feliz	85,94	87,08	88,38	89,56
		Tietê	91,19	91,37	91,59	91,80
SB2-MTM		90,98	91,41	91,89	92,31	

Todos os municípios do Médio Tietê Médio tiveram taxas de urbanização crescente no período considerado.

Jumirim apresentou as menores taxas de urbanização, observando-se, no entanto, uma tendência de retração da população rural.

Quadro 2.1-11 Taxas de Urbanização Sub-Bacia do Baixo Sorocaba

Sub-Ba	acia	Município	Anos			
Nome	Sigla	Municipio	2016	2020	2025	2030
		Alambari	79,38	81,83	84,57	86,93
		Capela do Alto	85,28	86,73	88,36	89,80
		Cesário Lange	67,52	67,52	67,51	67,52
.	SB3-BS	Laranjal Paulista	90,17	90,56	91,03	91,48
Baixo Sorocaba		Piedade	46,51	47,14	47,93	48,72
Corocaba		Quadra	25,78	25,89	26,05	26,21
		Salto de Pirapora	78,59	78,71	78,87	79,03
		Sarapuí	77,88	80,42	83,25	85,72
		Tatuí	96,55	97,15	97,70	98,08
	SB3-BS		80,08	80,91	81,81	82,57

Observa-se que todos os municípios do Baixo Sorocaba apresentam taxas de urbanização crescentes ao longo do período 2016-2030.

As taxas de urbanização dos municípios dessa sub-bacia apresentam contrastes importantes. Enquanto Tatuí tem elevadas taxas de urbanização, Piedade e Quadra têm a maior parte da sua população concentrada em área rural.

Quadro 2.1-12 Taxas de Urbanização Sub-Bacia do Médio Sorocaba

Sub-Ba	acia	Município	Anos			
Nome	Sigla	Mullicipio	2016	2020	2025	2030
		Alumínio	83,87	83,87	83,87	83,87
	SB4-MS	Araçoiaba da Serra	68,73	68,73	68,73	68,73
Médio		Iperó	61,71	61,71	61,71	61,71
Sorocaba		Mairinque	80,26	80,26	80,26	80,26
		Sorocaba	98,98	98,98	98,98	98,98
		Votorantim	96,19	96,19	96,19	96,19
SB4-MS			94,91	94,88	94,83	94,78

As taxas de urbanização dos municípios do Médio Sorocaba apresentaram praticamente constantes no período 2016-2030, com leve tendência de declínio.

Sorocaba apresenta as maiores taxas de urbanização, seguida por Votorantim. Esses dois municípios apresentam os maiores contingentes populacionais desta da sub-bacia.

Quadro 2.1-13 Taxas de Urbanização Sub-Bacia do Médio Tietê Superior

Sub-Bacia		Município	Anos			
Nome	Sigla	Wallicipio	2016	2020	2025	2030
		Araçariguama	100,00	100,00	100,00	100,00
BA 5 .11 - T1 - 42	SB5-MTS	Cabreúva	87,88	89,60	91,38	92,82
Médio Tietê Superior		Itu	94,55	95,09	95,68	96,19
oupono.		Salto	99,30	99,30	99,30	99,30
		São Roque	95,12	96,70	97,81	98,38
SB5-MTS		95,43	96,12	96,75	97,21	

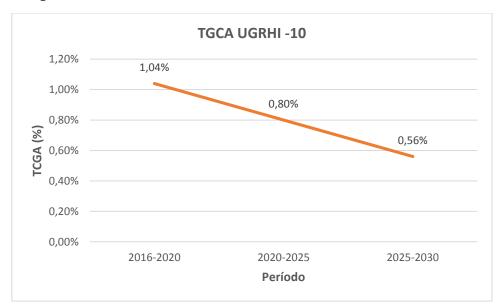
No Médio Tietê Superior os municípios de Araçariguama e Salto apresentaram taxas de urbanização constante para o período 2016-2030, enquanto que para os demais municípios essa taxas mostraram crescentes.

Quadro 2.1-14 Taxas de Urbanização Sub-Bacia do Alto Sorocaba

Sub-Bacia		Município	Anos			
Nome	Sigla	Municipio	2016	2020	2025	2030
Alto	SB6-AS	Ibiúna	36,14	36,90	37,85	38,82
Sorocaba	300-A3	Vargem Grande Paulista	100,00	100,00	100,00	100,00
SB6-AS			61,47	62,67	64,01	65,25

Considerando o total da sub-bacia do Alto Sorocaba, as taxas de urbanização são as menores da UGRHI-10, observando-se variações consideráveis entre os dois municípios que a integram. Enquanto em Vargem Grande Paulista toda a população se contra na área urbana, em Ibiúna as taxas de urbanização são baixas, ainda que apresentem uma tendência de crescimento.

c) Taxa Geométrica de Crescimento Populacional Anual(TGCA)


A taxa geométrica de crescimento populacional anual (TGCA) é o percentual de incremento médio anual da população residente em determinado espaço geográfico, constituindo-se em um indicador do crescimento populacional.

Pode-se consultar as taxas geométricas de crescimento populacional para o UGRHI-10 e suas sub-bacias no **Quadro 2.1-15** e na **Figura 2.1-6**.

Quadro 2.1-15 Taxa Geométrica de Crescimento Anual UGRHI-10 e Sub-Bacias

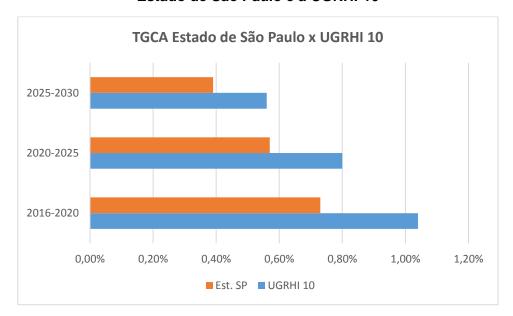

Sub-Bacia		TGCA (%)				
Sub-Dacia	2016-2020	2020-2025	2025-2030			
SB1-MTI	0,83	0,63	0,43			
SB2-MTM	1,11	0,90	0,64			
SB3-BS	0,93	0,77	0,57			
SB4-MS	1,08	0,80	0,52			
SB5-MTS	1,02	0,79	0,55			
SB6-AS	1,18	1,00	0,80			
UGRHI-10	1,04	0,80	0,56			

Figura 2.1-6 Taxas Geométricas de Crescimento Anual UGRHI-10

Observa-se uma tendência de redução da TGCA ao longo do período considerado, tendência essa também observada para o Estado de São Paulo de acordo com a SEADE (**Figura 2.1-7**). Ressalte-se que para o Estado de São Paulo essa tendência de redução é bem mais acentuada se comparada à UGRHI-10.

Figura 2.1-7 Comparação entre as Taxas Geométricas de Crescimento Anual do Estado de São Paulo e a UGRHI-10

Nos **Quadros 2.1-16** a **2.1-21**, a seguir, estão discriminadas as taxas geométricas de crescimento anual (TGCA) dos municípios que integram a UGHR-10, distribuídos em suas respectivas sub-bacias.

Quadro 2.1-16 TGCA (%) Sub-Bacia Médio Tietê Inferior

Sub-Ba	acia	- Município	Períodos			
Nome	Sigla	Widilicipio	2016-2020	2020-2025	2025-2030	
		Anhembi	1,69	1,25	0,96	
		Bofete	1,32	1,07	0,75	
	SB1-MTI	Botucatu	0,91	0,68	0,46	
Médio Tietê Inferior		Conchas	0,49	0,40	0,29	
		Pereiras	1,36	0,94	0,59	
		Porangaba	1,02	0,75	0,48	
		Torre de Pedra	0,29	0,25	0,11	
SB1-MTI		0,83	0,63	0,43		

Quadro 2.1-17 TGCA (%) Sub-Bacia Médio Tietê Médio

Sub-Ba	Sub-Bacia		Períodos			
Nome	Sigla	Município	2016-2020	2020-2025	2025-2030	
		Boituva	1,48	1,21	0,84	
	SB2-MTM	Cerquilho	1,37	1,12	0,85	
Médio Tietê Médio		Jumirim	1,46	1,11	0,83	
Ivieuto		Porto Feliz	0,53	0,41	0,25	
		Tietê	1,02	0,81	0,61	
SB1-MTM			1,11	0,90	0,64	

Quadro 2.1-18 TGCA (%) Sub-Bacia Baixo Sorocaba

Sub-Bacia		Município		Períodos			
Nome	Sigla	Widilicipio	2016-2020	2020-2025	2025-2030		
		Alambari	1,59	1,34	1,00		
		Capela do Alto	1,56	1,39	1,19		
		Cesário Lange	0,87	0,65	0,45		
	SB3-BS	Laranjal Paulista	0,92	0,74	0,54		
Baixo Sorocaba		Piedade	0,28	0,22	0,14		
Solocaba		Quadra	1,27	0,97	0,77		
		Salto de Pirapora	0,96	0,85	0,58		
		Sarapuí	1,11	0,96	0,74		
		Tatuí	1,08	0,90	0,69		
SB3- BS		0,93	0,77	0,57			

Quadro 2.1-19 TGCA (%) Sub-Bacia Médio Sorocaba

Sub-Ba	acia	- Município	Períodos			
Nome	Sigla	Widilicipio	2016-2020	2020-2025	2025-2030	
	Alumínio	0,63	0,54	0,45		
		Araçoiaba da Serra	1,61	1,41	1,02	
Médio	SB4-MS	Iperó	1,73	1,30	0,95	
Sorocaba		Mairinque	0,64	0,53	0,36	
		Sorocaba	1,09	0,79	0,48	
		Votorantim	0,92	0,70	0,51	
SB4-MS		1,08	0,80	0,52		

Quadro 2.1-20 TGCA (%) Sub-Bacia Médio Tietê Superior

Sub-Bacia		Município	Períodos			
Nome	Sigla	Município -	2016-2020	2020-2025	2025-2030	
		Araçariguama	1,86	1,47	1,11	
	SB5-MTS	Cabreúva	1,65	1,38	1,08	
Médio Tietê Superior		Itu	0,90	0,69	0,46	
Superior		Salto	0,86	0,62	0,44	
		São Roque	0,92	0,68	0,41	
SB5-MTS			1,02	0,79	0,55	

Quadro 2.1-21 TGCA (%) Sub-Bacia Alto Sorocaba

Sub-Ba	Sub-Bacia Município		Períodos			
Nome	Sigla	Withicipio	2016-2020	2020-2025	2025-2030	
Alto	0 505.45	Ibiúna	0,69	0,57	0,41	
Sorocaba SB6-AS	Vargem Grande Paulista	1,92	1,61	1,33		
SB6-AS		1,18	1,00	0,80		

2.2 Demanda por Recursos Hídricos

A projeção das demandas por recursos hídricos envolve aquelas relativas aos usos urbano, rural e industrial, além de outros usos.

a) Projeção da Demanda para Abastecimento Urbano

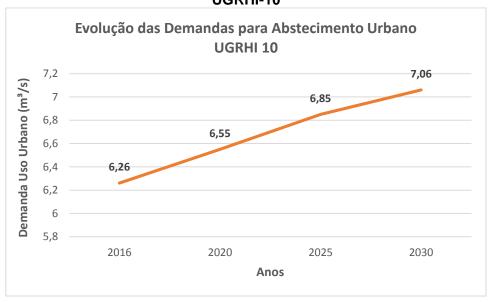
Para as projeções das demandas para abastecimento urbano foram utilizadas as projeções da população e os coeficientes per capita de consumo propostos pelo Operador Nacional do Sistema Elétrico (ONS).

Esses coeficientes foram propostos levando em consideração o Estado considerado e a faixa de população do município. Os valores para o Estado de São Paulo encontramse especificados no **Quadro 2.2-1**.

Quadro 2.2-1- Coeficientes de Retirada Urbana per capita por Faixa Populacional (Estado de São Paulo)

Faixa população (habitantes)	Coeficiente per capita (L/hab.dia)
<10.000	225
10.000 a 100.000	263
100.000 a 500.000	301
> 500.000	353

Fonte: ONS, 2003.


Aplicando-se essa metodologia para os municípios da UGRHI-10, de acordo com as sub-bacias nas quais os mesmos encontram-se inseridos, foi possível chegar aos resultados para a demanda por recursos hídricos para abastecimento urbano apontados no **Quadro 2.2-2**. A evolução dessas demandas para o total da UGRHI-10 e as sub-bacias que a integram pode ser visualizada nas **Figuras 2.2-1** e **2.2-2**, respectivamente.

Considerando que o município de Salto realiza a captação para abastecimento urbano no rio Piraí (UGRHI-05), os dados relativos a esse município não foram considerados no cálculo da projeção da demanda para abastecimento Urbano.

Quadro 2.2-2 Projeção das Demandas para Abastecimento Urbano UGRHI-10 e Sub-Bacias

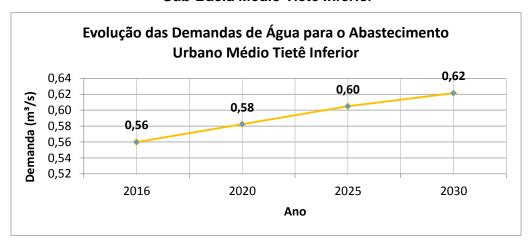
Sub-Bacias	Demanda para Abastecimento Urbano (m³/s)					
	2016	2020	2025	2030		
SB1-MTI	0,56	0,58	0,60	0,62		
SB2-MTM	0,53	0,55	0,58	0,61		
SB3-BS	0,76	0,79	0,83	0,86		
SB4-MS	3,22	3,36	3,49	3,58		
SB5-MTS	0,97	1,02	1,07	1,11		
SB6-AS	0,23	0,25	0,26	0,28		
UGRHI-10	6,26	6,55	6,85	7,06		

Figura 2.2-1 Evolução das Demandas para Abastecimento Urbano na UGRHI-10

Evolução da Demanda de Água para o Abastecimento Urbano Sub-bacias da UGRHI 10 4,00 3,50 3,00 2,50 Demanda (m³/s 2016 2,00 **2020** 1,50 2025 1,00 2030 0,50 0,00 BS MTS MS MTI MTM MS **Sub-Bacias**

Figura 2.2-2 Evolução das Demandas para Abastecimento Urbano Sub-Bacias UGRHI-10

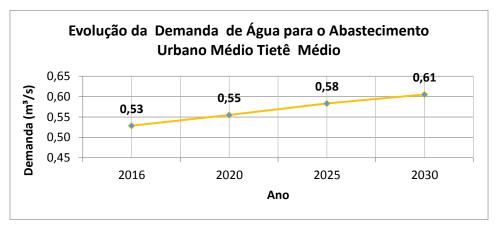
O Médio Sorocaba é sub-bacia com maior contingente populacional da UGRHI-10 e, assim, apresenta também a maior demanda de água para abastecimento urbano.


No Médio Tietê Superior mercê destaque o município de Botucatu, sede da região de governo de mesmo nome, que concentra o maior contingente populacional desta subbacia. No entanto, a captação para abastecimento urbano da sede deste Município e do distrito de Rubião Junior é realizada no rio Pardo, afluente da margem direita do rio Paranapanema, inserido na UGRHI 17, Médio Paranapanema.

Nos **Quadros 2.2-3** a **2.2-8** encontram-se discriminadas, por município e suas respectivas sub-bacias, as projeções das demandas para abastecimento urbano. A evolução dessas demandas por sub-bacias pode ser visualizada nas **Figuras 2.2-3** a **2.2-8**.

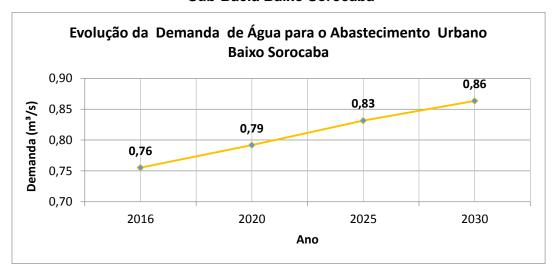
Quadro 2.2-3 Projeção das Demandas para Abastecimento Urbano Sub-Bacia Médio Tietê Inferior

Sub-Bacia	Município	Demanda Abastecimento Urbano (m³/s)				
	•	2016	2020	2025	2030	
	Anhembi	0,013	0,014	0,015	0,016	
	Bofete	0,017	0,018	0,019	0,020	
Médio Tietê	Botucatu	0,458	0,475	0,492	0,504	
Inferior	Conchas	0,043	0,045	0,046	0,048	
(SB-MTI)	Pereiras	0,014	0,015	0,015	0,016	
	Porangaba	0,011	0,012	0,012	0,013	
	Torre de Pedra	0,004	0,004	0,005	0,005	
Total SB-MTI		0,560	0,582	0,605	0,622	


Figura 2.2-3 Evolução das Demandas para Abastecimento Urbano Sub-Bacia Médio Tietê Inferior

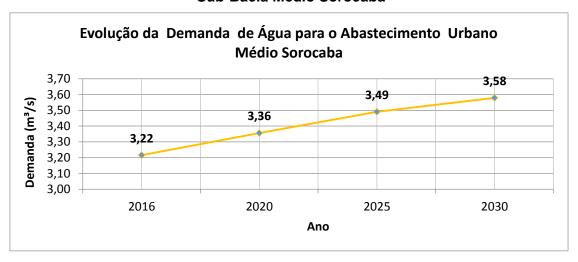
Quadro 2.2-4 Projeção das Demandas para Abastecimento Urbano Sub-Bacia Médio Tietê Médio

Sub-Bacia	Município	Demanda Abastecimento Urbano (m³/s)				
	•	2016	2020	2025	2030	
	Boituva	0,155	0,164	0,174	0,182	
Médio Tietê	Cerquilho	0,127	0,134	0,142	0,148	
Médio	Jumirim	0,005	0,006	0,006	0,007	
(SB-MTM)	Porto Feliz	0,132	0,137	0,142	0,146	
	Tietê	0,109	0,114	0,119	0,123	
Total SB-MTM		0,528	0,555	0,583	0,605	


Figura 2.2-4 Evolução das Demandas para Abastecimento Urbano Sub-Bacia Médio Tietê Médio

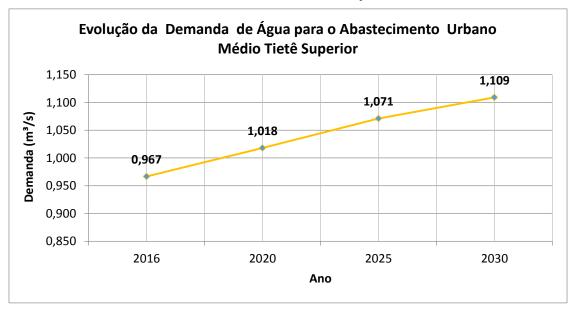
Quadro 2.2-5 Projeção das Demandas para Abastecimento Urbano Sub-Bacia Baixo Sorocaba

Sub-Bacia	Município	Demanda Abastecimento Urbano (m³/s)				
	·	2016	2020	2025	2030	
	Alambari	0,011	0,012	0,014	0,015	
	Capela do Alto	0,050	0,054	0,059	0,064	
	Cesário Lange	0,034	0,035	0,037	0,037	
Baixo	Laranjal Paulista	0,074	0,077	0,080	0,083	
Sorocaba	Piedade	0,075	0,077	0,079	0,081	
(SB-BS)	Quadra	0,002	0,003	0,003	0,003	
	Salto de Pirapora	0,102	0,106	0,110	0,113	
	Sarapuí	0,020	0,021	0,023	0,025	
	Tatuí	0,387	0,407	0,428	0,444	
To	tal SB-BS	0,755	0,792	0,832	0,863	


Figura 2.2-5 Evolução das Demandas para Abastecimento Urbano Sub-Bacia Baixo Sorocaba

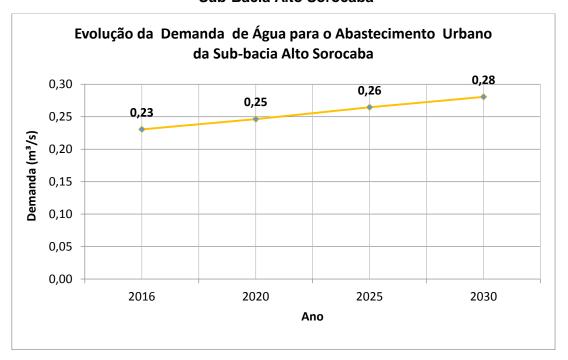
Quadro 2.2-6 Projeção das Demandas para Abastecimento Urbano Sub-Bacia Médio Sorocaba

Sub-Bacia	Município	Demanda Abastecimento Urbano (m³/s)				
	·	2016	2020	2025	2030	
	Alumínio	0,045	0,046	0,047	0,048	
	Araçoiaba da Serra	0,064	0,068	0,073	0,076	
Médio Sorocaba	Iperó	0,060	0,065	0,069	0,072	
(SB-MS)	Mairinque	0,110	0,113	0,116	0,118	
,	Sorocaba	2,550	2,663	2,770	2,837	
	Votorantim	0,387	0,402	0,416	0,426	
Total SB-MS		3,216	3,356	3,490	3,579	


Figura 2.2-6 Evolução das Demandas para Abastecimento Urbano Sub-Bacia Médio Sorocaba

Quadro 2.2-7 Projeção das Demandas para Abastecimento Urbano Sub-Bacia Médio Tietê Superior

Sub-Bacia	Município	Demanda Abastecimento Urbano (m³/s)			
	•	2016	2020	2025	2030
Médio	Araçariguama	0,059	0,064	0,069	0,073
Tietê	Cabreúva	0,124	0,135	0,147	0,158
Superior	Itu	0,539	0,562	0,586	0,602
(SB-MTS)	São Roque	0,244	0,257	0,269	0,277
Total SB-MTS		0,967	1,018	1,071	1,019


Figura 2.2-7 Evolução das Demandas para Abastecimento Urbano Sub-Bacia Médio Tietê Superior

Quadro 2.2-8 Projeção das Demandas para Abastecimento Urbano Sub-Bacia Alto Sorocaba

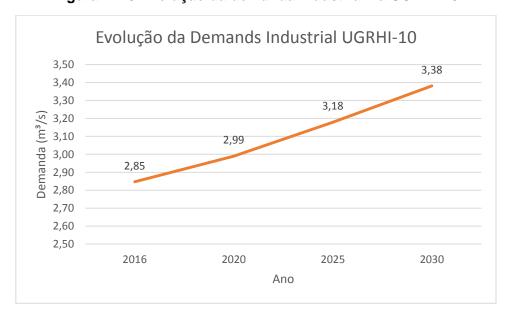
Sub-Bacia	Município	Demanda Abastecimento Urbano (m³/s)				
	•	2016	2020	2025	2030	
Alto	Ibiúna	0,082	0,086	0,091	0,095	
Sorocaba (SB-AS)	Vargem Grande Paulista	0,149	0,161	0,174	0,186	
Sub Total SB-AS		0,231	0,246	0,265	0,281	

Figura 2.2-8 Evolução das Demandas para Abastecimento Urbano Sub-Bacia Alto Sorocaba

b) Projeção da Demanda Industrial

Para realizar a projeção da demanda industrial foram inicialmente compilados os dados referentes às outorgas do DAEE, disponíveis para a elaboração dos relatórios de situação (2007 a 2015), e em seguida foram calculadas as médias históricas para cada município.

Posteriormente foi aplicada uma taxa de crescimento anual de 1,2% a.a. para a demanda industrial na região da UGRHI 10, calculada a partir do estudo de demandas para a indústria elaborada pelo DAEE para a Macrometrópole Paulista. (DAEE,2013).


Com base nessa metodologia obteve-se as projeções da demanda industrial por município, por sub-bacia e para o total da UGRHI-10. Do **Quadro 2.2-9** constam as demandas industriais por sub-bacia e para o total da UGRHI, cuja evolução pode ser visualizada nas **Figura 2.2-9** e **2.2-10**

Observe-se que o município de Salto não foi incluído nesse cálculo, considerando que as captações para uso industrial são realizadas nos corpos de água que compõe a bacia do rio Jundiaí (UGRHI-05).

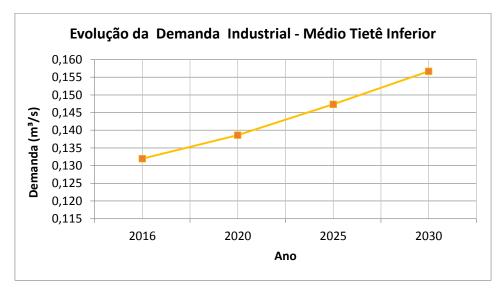
Quadro 2.2-9 Projeção da Demanda Industrial na UGRHI-10 e Sub-Bacias

Sub-Bacias	Demanda Industrial (m³/s)				
	2016	2020	2025	2030	
SB1-MTI	0,132	0,139	0,147	0,157	
SB2-MTM	0,85	0,89	0,95	1,01	
SB3-BS	0,545	0,572	0,608	0,647	
SB4-MS	0,711	0,747	0,794	0,845	
SB5-MTS	0,575	0,604	0,642	0,683	
SB6-AS	0,036	0,038	0,041	0,043	
UGRHI-10	2,847	2,990	3,179	3,381	

Figura 2.2-9 Evolução da demanda Industrial na UGRHI-10

Evolução da Demanda Industrial nas Sub-bacias da UGRHI 10 1,200 1,000 Demanda (m³/s) 0,800 **2016** 0,600 **2020** 0,400 2025 0,200 2030 0,000 MTS AS MTI MTM BS MS Ano

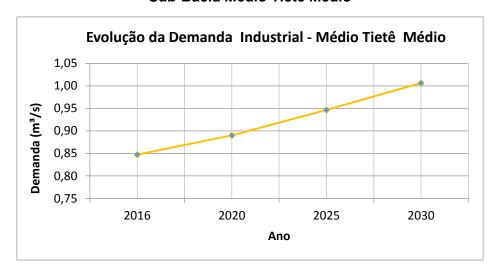
Figura 2.2-10 Evolução da demanda Industrial nas Sub-Bacias da UGRHI-10


A sub-bacia do Médio Tietê Médio concentra a maior demanda industrial da UGRHI, ainda que o maior parque industrial esteja localizado na sub-bacia do Médio Sorocaba. Tal situação está relacionada à presença das usinas de açúcar e álcool situadas nos municípios de Cerquilho e Boituva, situadas no Médio Tietê Médio, que fazem uso intensivo dos recursos hídricos.

Os **Quadros 2.2-10** a **2.2-18** contém as projeções das demandas urbanas dos municípios agregados nas sub-bacias nas quais se inserem. A evolução da demanda industrial por sub-bacia pode ser visualizada nas Figuras **2.2-11** a **2.2-19**.

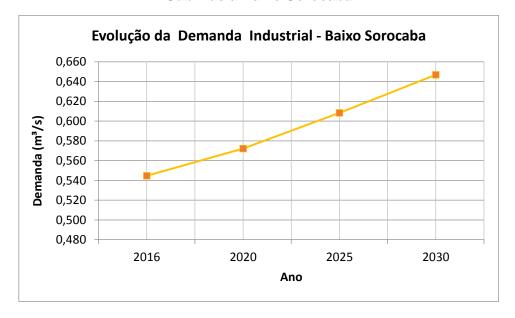
Quadro 2.2-10 Projeção da Demanda Industrial Sub-Bacia Médio Tietê Inferior

Sub-Bacia	Município		Demanda Industrial (m³/s)			
		2016	2020	2025	2030	
	Anhembi	0,063	0,066	0,071	0,075	
	Bofete	0,052	0,055	0,058	0,062	
Médio Tietê	Botucatu	0,009	0,010	0,011	0,011	
Inferior	Conchas	0,003	0,003	0,004	0,004	
(SB-MTI)	Pereiras	0,004	0,004	0,004	0,004	
	Porangaba	0,000	0,000	0,000	0,000	
	Torre de Pedra	0,000	0,000	0,000	0,000	
Tot	al SB-MTI	0,132	0,139	0,147	0,157	


Figura 2.2-11 Evolução da Demanda Industrial Sub-Bacia Médio Tietê Inferior

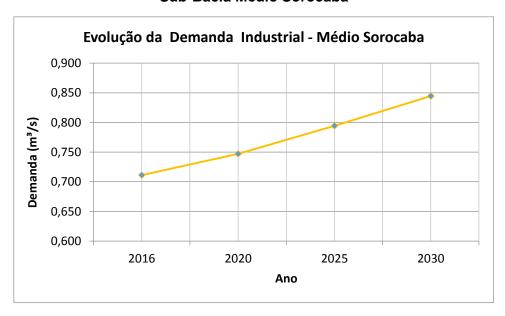
Quadro 2.2-11 Projeção da Demanda Industrial Sub-Bacia Médio Tietê Médio

Sub-Bacia	Município	Demanda Industrial (m³/s)					
		0,373 0,392 0,4 0,343 0,360 0,3	2025	2030			
	Boituva	0,373	0,392	0,417	0,443		
Médio Tietê	Cerquilho	0,343	0,360	0,383	0,407		
Médio	Jumirim	0,006	0,006	0,006	0,007		
(SB-MTM)	Porto Feliz	0,060	0,063	0,067	0,071		
Tie	Tietê	0,066	0,069	0,074	0,078		
Total	SB-MTM	0,847	0,890	0,947	1,006		


Figura 2.2-12 Evolução da Demanda Industrial Sub-Bacia Médio Tietê Médio

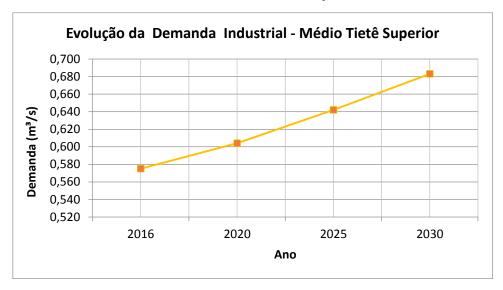
Quadro 2.2-12 Projeção da Demanda Industrial Sub-Bacia Baixo Sorocaba

Sub-Bacia	Município		Demanda Industrial (m³/s)			
		2016	2020	2025	2030	
	Alambari	0,000	0,000	0,000	0,000	
	Capela do Alto Cesário Lange	0,000	0,000	0,000	0,000	
	Cesário Lange	0,119	0,125	0,132	0,141	
Baixo	Laranjal Paulista	0,183	0,192	0,204	0,217	
Sorocaba	Piedade	0,001	0,001	0,001	0,001	
(SB-BS)	Quadra	0,000	0,000	0,000	0,000	
	Salto de Pirapora	0,030	0,031	0,033	0,035	
	Sarapuí	0,003	0,003	0,003	0,003	
	Tatuí	0,210	0,221	0,235	0,249	
Т	otal SB-BS	0,545	0,572	0,608	0,647	


Figura 2.2-13 Evolução da Demanda Industrial Sub-Bacia Baixo Sorocaba

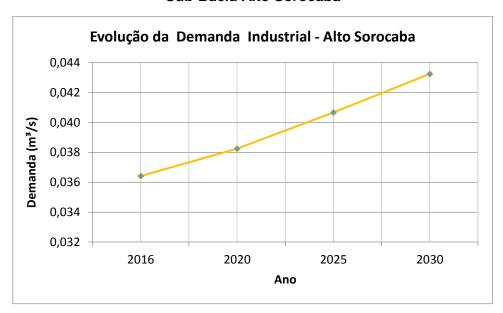
Quadro 2.2-13 Projeção da Demanda Industrial Sub-Bacia Médio Sorocaba

Sub-Bacia	Município	Demanda Industrial (m³/s)			
		2016	2020	2025	2030
	Alumínio	0,103	0,108	0,115	0,122
	Araçoiaba da Serra	0,001	0,001	0,001	0,002
Médio Sorocaba	Iperó	0,066	0,069	0,073	0,078
(SB-MS)	Mairinque	0,012	0,013	0,014	0,015
(==)	Sorocaba	0,408	0,429	0,456	0,485
	Votorantim	0,121	0,127	0,135	0,144
Total SB-BS 0,711 0,747 0,794 0,8			0,845		


Figura 2.2-14 Evolução da Demanda Industrial Sub-Bacia Médio Sorocaba

Quadro 2.2-14 Projeção da Demanda Industrial Sub-Bacia Médio Tietê Superior

Sub-Bacia	Município		Demanda Industrial (m³/s)			
		2016	2020	2025	2030	
	Araçariguama	0,283	0,297	0,316	0,336	
Médio Tietê	Cabreúva	0,020	0,021	0,023	0,024	
Superior (SB-MTS)	Itu	0,249	0,262	0,279	0,296	
(32)	São Roque	0,022	0,023	0,025	0,026	
To	tal SB-MTS	0,575	0,604	0,642	0,683	


Figura 2.2-15 Evolução da Demanda Industrial Sub-Bacia Médio Tietê Superior

Quadro 2.2-15 Projeção da Demanda Industrial Sub-Bacia Alto Sorocaba

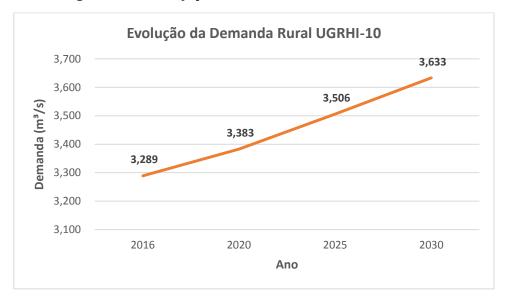
Sub-Bacia	Demanda Industrial m-Bacia Município (m³/s)				
		2016	2020	2025	2030
Alto Sorocaba	Ibiúna	0,034	0,036	0,038	0,041
(SB-AS)	Vargem Grande Paulista	0,002	0,002	0,003	0,003
T	otal SB-AS	0,036	0,038	0,041	0,043

Figura 2.2-16 Evolução da Demanda Industrial Sub-Bacia Alto Sorocaba

c) Projeção da Demanda Rural

A demanda de água para uso refere-se aos volumes de água superficial e subterrânea requeridos para irrigação, pecuária, agricultura, dentre outros. Neste universo a irrigação se destaca como o principal usuário.

A projeção da demanda rural foi realizada a partir da compilação dos dados relativos às outorgas do DAEE, disponilizados para a elaboração dos relatórios de situação (2007 a 2015), e em seguida foram calculadas as médias históricas para cada município.


Em seguida foi aplicada uma taxa de crescimento anual relativa à demanda para irrigação na região da UGRHI 10, de 0,713% a.a., calculada a partir do estudo dessas demandas elaborado pelo DAEE para a Macrometrópole Paulista (DAEE,2013).

Dessa forma obteve-se as projeções da demanda rural por município, por sub-bacia e para o total da UGRHI-10. Do **Quadro 2.2-16** constam essas demandas para o total da UGRHI-10 e por sub-bacia, cuja evolução pode ser visualizada nas **Figuras 2.2-17** e **2.2-18.**

Quadro 2.2-16 Projeção da Demanda Rural na UGRHI-10 e Sub-Bacias

Sub-Bacias	Demanda Rural (m³/s)				
	2016	2020	2025	2030	
SB1-MTI	1,976	2,033	2,106	2,183	
SB2-MTM	0,109	0,112	0,116	0,120	
SB3-BS	0,941	0,968	1,003	1,040	
SB4-MS	0185	0,190	0,197	0,204	
SB5-MTS	0,068	0,070	0,073	0,076	
SB6-AS	0,009	0,010	0,010	0,010	
UGRHI-10	3,289	3,383	3,506	3,633	

Figura 2.2-17 Projeção da Demanda Rural na UGRHI-10

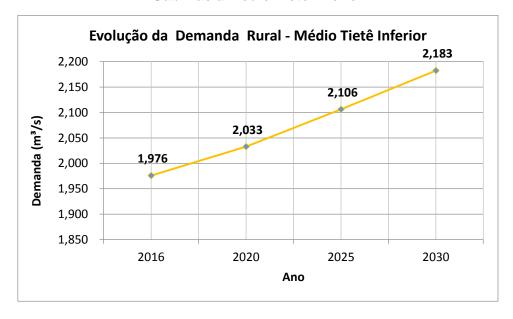
Evolução da Demanda Rural das Sub-bacias da UGRHI 10 2,500 2,000 Demanda (m³/s) 1,500 **2016 2020** 1,000 2025 0,500 2030 MTI MTM BS MS MTS AS **Sub-bacias**

Figura 2.2-18 Projeção da Demanda Rural Sub-Bacias da UGRHI-10

Observa-se que os municípios do Médio Tietê Inferior apresentam as maiores demandas rurais, que tem o município de Botucatu como o principal usuário (apesar da sua alta taxa de urbanização), seguido por Anhembi.

Destaca-se ainda a sub-bacia do Baixo Sorocaba (que possui a segunda menor taxa de urbanização da UGRHI), tendo-se que os municípios de Tatuí, Piedade e Salto de Pirapora apresentam as maiores demandas para uso rural.

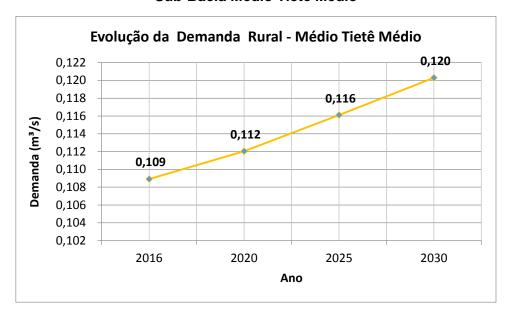
Os **Quadros 2.2-17** a **2.2-25** apresentam as demandas rurais por município, agregados por sub-bacia. A evolução das demandas por sub-bacia pode ser visualizada nas **Figuras 2.2-19** a **2.2-27**.


Da análise desses quadros é possível verificar que em diversos municípios não são apontadas demandas rurais. Considerando que as projeções tiveram por base as demandas outorgadas, é possível afirmar que existem captações não outorgadas para esse uso, notadamente em municípios onde a população se concentra em áreas rurais.

Outra situação reveladora dessa situação é o município de Ibiúna, situado na sub-bacia do Alto Sorocaba, que tem sua atividade a agricultura como principal atividade econômica, e as vazões outorgadas para uso rural são relativamente baixas

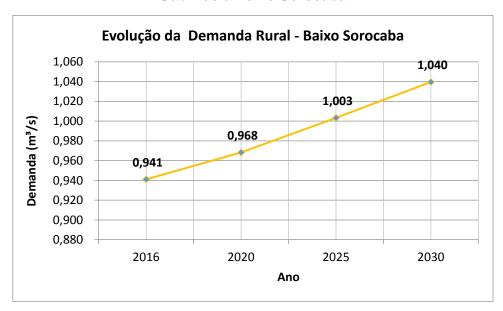
Quadro 2.2-17 Projeção da Demanda Rural Sub-Bacia Médio Tietê Inferior

Sub-Bacia	Município	Demanda Rural (m³/s)			
		2016	2020	2025	2030
	Anhembi	0,454	0,467	0,484	0,502
	Bofete	0,004	0,004	0,005	0,005
Médio Tietê	Botucatu	1,517	1,560	1,617	1,675
Inferior	Conchas	0,001	0,001	0,001	0,001
(SB-MTI)	Pereiras	0,000	0,000	0,000	0,000
	Porangaba	0,000	0,000	0,000	0,000
	Torre de Pedra	0,000	0,000	0,000	0,000
	Total SB-MTI		2,033	2,106	2,183


Figura 2.2-19 Evolução da Demanda Rural Sub-Bacia Médio Tietê Inferior

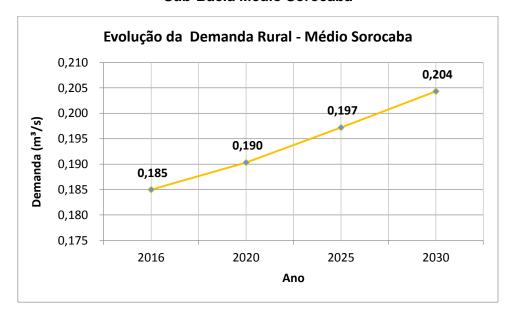
Quadro 2.2-18 Projeção da Demanda Rural Sub-Bacia Médio Tietê Médio

Sub-Bacia	Município	Demanda Rural (m³/s)			
		2016	2020	2025	2030
	Boituva	0,004	0,004	0,005	0,005
Médio Tietê	Cerquilho	0,001	0,001	0,002	0,002
Médio	Jumirim	0,000	0,000	0,000	0,000
(SB-MTM)	Porto Feliz	0,052	0,054	0,056	0,058
	Tietê	0,050	0,052	0,054	0,056
	Total SB-MTM	0,109	0,112	0,116	0,120


Figura 2.2-20 Evolução da Demanda Rural Sub-Bacia Médio Tietê Médio

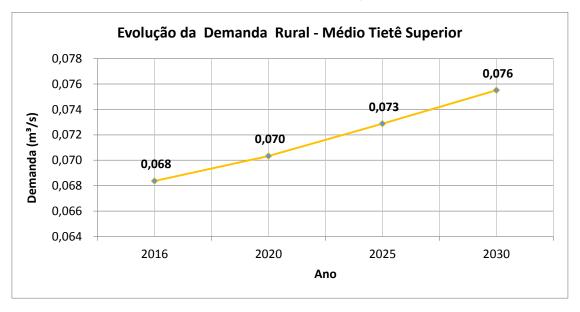
Quadro 2.2-19 Projeção da Demanda Rural Sub-Bacia Baixo Sorocaba

Sub-Bacia	Município	Demanda Rural (m³/s)			
		2016	2020	2025	2030
	Alambari	0,000	0,000	0,000	0,000
	Capela do Alto	0,083	0,085	0,088	0,091
	Cesário Lange	0,016	0,016	0,017	0,018
Baixo	Laranjal Paulista	0,005	0,005	0,005	0,005
Sorocaba	Piedade	0,169	0,174	0,180	0,187
(SB-BS)	Quadra	0,004	0,004	0,004	0,005
	Salto de Pirapora	0,144	0,148	0,154	0,159
	Sarapuí	0,000	0,000	0,000	0,000
	Tatuí	0,520	0,535	0,555	0,575
	Total SB-BS	0,941	0,968	1,003	1,040


Figura 2.2-21 Evolução da Demanda Rural Sub-Bacia Baixo Sorocaba

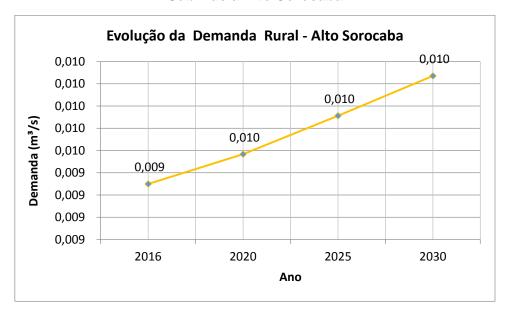
Quadro 2.2-20 Projeção da Demanda Rural Sub-Bacia Médio Sorocaba

Sub-Bacia	Município	Demanda Rural (m³/s)			
		2016	2020	2025	2030
	Alumínio	0,000	0,000	0,000	0,000
	Araçoiaba da Serra	0,004	0,004	0,004	0,005
Médio Sorocaba	Iperó	0,002	0,002	0,002	0,002
(SB-MS)	Mairinque	0,035	0,036	0,038	0,039
(020)	Sorocaba	0,143	0,147	0,152	0,158
	Votorantim	0,001	0,001	0,001	0,001
Total SB-MS		0,185	0,190	0,197	0,204


Figura 2.2-22 Evolução da Demanda Rural Sub-Bacia Médio Sorocaba

Quadro 2.2-21 Projeção da Demanda Rural Sub-Bacia Médio Tietê Superior

Sub-Bacia	Município	Demanda Rural (m³/s)			
		2016	2020	2025	2030
	Araçariguama	0,005	0,005	0,006	0,006
Médio Tietê	Cabreúva	0,003	0,003	0,003	0,003
Superior	Itu	0,042	0,043	0,045	0,046
(SB-MTS)	Salto	0,000	0,000	0,000	0,000
	São Roque	0,018	0,019	0,020	0,020
Total SB-MTS		0,068	0,070	0,073	0,076


Figura 2.2-23 Evolução da Demanda Rural Sub-Bacia Médio Tietê Superior

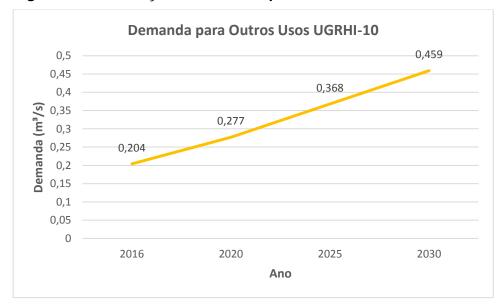
Quadro 2.2-22 Projeção da Demanda Rural Sub-Bacia Alto Sorocaba

Sub-Bacia	Município	Demanda Rural (m³/s)			
		2016	2020	2025	2030
Alto	Ibiúna	0,009	0,009	0,009	0,010
Sorocaba (SB-AS)	Vargem Grande Paulista	0,001	0,001	0,001	0,001
Total SB-AS		0,009	0,010	0,010	0,010

Figura 2.2-24 Evolução da Demanda Rural Sub-Bacia Alto Sorocaba

d) Demanda para Outros Usos

Considera-se outros usos o volume total de água superficial e subterrânea requerido pelos usos que não se enquadram como urbano, industrial ou rural, denominados conjuntamente de outros usos, a exemplo de lazer, paisagismo, dentre outros.


A projeção da demanda para outros usos foi realizada a partir da compilação dos dados relativos às vazões outorgadas pelo DAEE, disponilizados para a elaboração dos relatórios de situação (2007 a 2015), e em seguida foram calculadas as médias históricas para cada município, e em seguida foi aplicada uma taxa de crescimento anual.

Dessa forma obteve-se as projeções da demanda para outros usos por município, por sub-bacia e para o total da UGRHI-10. Do **Quadro 2.2-23** constam essas demandas para o total da UGRHI-10 e por sub-bacia, cuja evolução pode ser visualizada nas **Figura 2.2-25** e **2.2-26**.

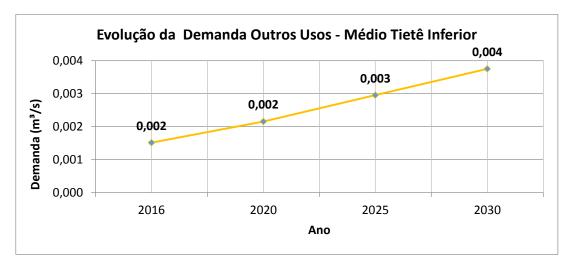
Quadro 1.23 Projeção da Demanda para Outros Usos UGHRI-10 e Sub-Bacias

Sub-Bacias	Demanda Outros Usos (m³/s)					
	2016	2020	2025	2030		
SB1-MTI	0,002	0,002	0,003	0,004		
SB2-MTM	0,03	0,04	0,05	0,06		
SB3-BS	0,01	0,02	0,02	0,03		
SB4-MS	0,09	0,12	0,17	0,21		
SB5-MTS	0,07	0,09	0,11	0,13		
SB6-AS	0,008	0,013	0,019	0,025		
UGRHI-10	0,204	0,277	0,368	0,459		

Figura 2.2-25 Evolução da Demanda para Outros Usos UGRHI-10

Evolução da Demanda de Água para Outros Usos Sub-bacias UGRHI 10 0,250 0,200 Demanda (m³/s 0,150 **2016 2020** 0,100 **2025** 0,050 2030 0,000 BS MS AS MTI MTM MTS **Sub-Bacias**

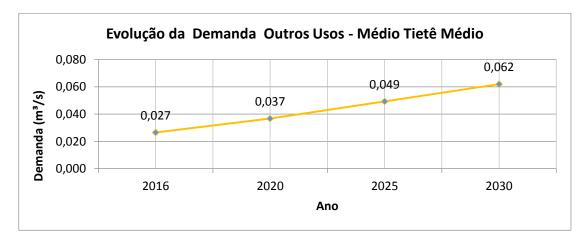
Figura 2.2-26 Evolução da Demanda para Outros Usos Sub-Bacias


Observa-se que as sub-bacias do Médio Sorocaba e Médio Tietê Superior apresentam as maiores demandas para outros usos. No Médio Sorocaba destacam-se os municípios de Sorocaba e Votorantim como os maiores usuários.

Os **Quadros 2.2-24** a **2.2-29** apresentam as projeções das demandas para outros usos nos municípios que integram a UGHRI-10, agrupados por sub-bacia, cuja evolução pode ser visualizada nas **Figuras 2.2-27** a **2.2-32**.

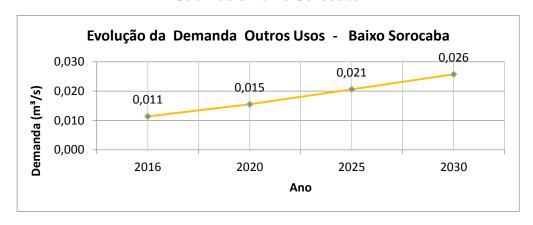
Quadro 2.2-24 Projeção da Demanda para Outros Usos Sub-Bacia Médio Tietê Inferior

Sub-Bacia	Município	Demanda Outros Usos (m³/s)			
		2016	2020	2025	2030
	Anhembi	0,000	0,000	0,000	0,000
	Bofete	0,002	0,002	0,003	0,004
Médio Tiete	Botucatu	0,000	0,000	0,000	0,000
Inferior	Conchas	0,000	0,000	0,000	0,000
(SB-MTI)	Pereiras	0,000	0,000	0,000	0,000
	Porangaba	0,000	0,000	0,000	0,000
	Torre de Pedra	0,000	0,000	0,000	0,000
Total SB-MTI		0,002	0,002	0,003	0,004


Figura 2.2-27 Evolução da Demanda para Outros Usos Sub-Bacia Médio Tietê Inferior

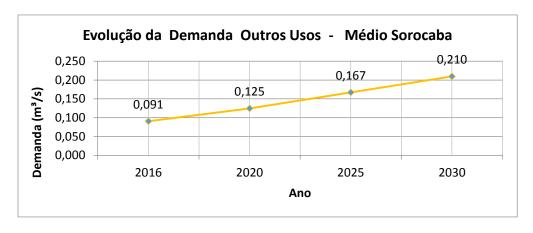
Quadro 2.2-25 Projeção da Demanda para Outros Usos Sub-Bacia Médio Tietê Médio

Sub-Bacia	Município	Demanda Outros Usos (m³/s)			
		2016	2020	2025	2030
Médio Tietê	Boituva	0,005	0,008	0,011	0,013
	Cerquilho	0,002	0,003	0,004	0,005
Médio	Jumirim	0,000	0,000	0,000	0,000
(SB-MTM)	Porto Feliz	0,020	0,026	0,035	0,044
	Tietê	0,000	0,000	0,000	0,000
Total SB-MTM		0,027	0,037	0,049	0,062


Figura 2.2-28 Evolução da Demanda para Outros Usos Sub-Bacia Médio Tietê Médio

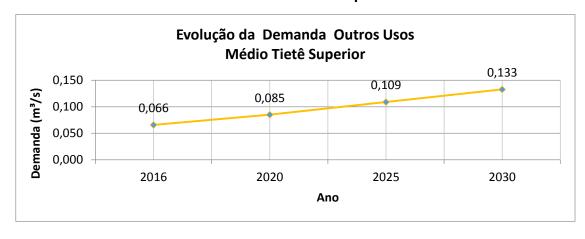
Quadro 2.2-26 Projeção da Demanda para Outros Usos Sub-Bacia Baixo Sorocaba

Sub-Bacia	Município	Demanda Outros Usos (m³/s)			
	•	2016	2020	2025	2030
	Alambari	0,000	0,000	0,000	0,000
	Capela do Alto	0,000	0,000	0,000	0,000
	Cesário Lange	0,001	0,001	0,001	0,001
Delas Ossessia	Laranjal Paulista	0,000	0,000	0,000	0,000
Baixo Sorocaba (SB-BS)	Piedade	0,004	0,005	0,006	0,007
(05 50)	Quadra	0,000	0,000	0,000	0,000
	Salto de Pirapora	0,000	0,000	0,000	0,000
	Sarapuí	0,000	0,000	0,000	0,000
	Tatuí	0,007	0,010	0,014	0,018
Tota	Total SB-BS		0,015	0,021	0,026


Figura 2.2-29 Evolução da Demanda para Outros Usos Sub-Bacia Baixo Sorocaba

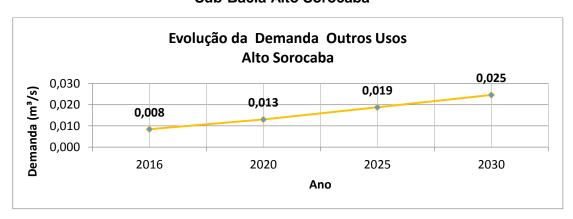
Quadro 2.2-27 Projeção da Demanda para Outros Usos Sub-Bacia Médio Sorocaba

Sub-Bacia	Município	Demanda Outros Usos (m³/s)			
	•	2016	2020	2025	2030
	Alumínio	0,000	0,000	0,000	0,000
	Araçoiaba da Serra	0,000	0,000	0,000	0,000
Médio Sorocaba	Iperó	0,001	0,001	0,002	0,002
(SB-MS)	Mairinque	0,012	0,013	0,015	0,017
	Sorocaba	0,055	0,076	0,103	0,129
	Votorantim	0,022	0,033	0,047	0,060
Total SB-MS		0,091	0,125	0,167	0,210


Figura 2.2-30 Evolução da Demanda para Outros Usos Sub-Bacia Médio Sorocaba

Quadro 2.2-28 Projeção da Demanda para Outros Usos Sub-Bacia Médio Tietê Superior

Sub-Bacia	Município	Demanda Outros Usos (m³/s)			
		2016	2020	2025	2030
Médio Tiete	Araçariguama	0,000	0,000	0,000	0,000
	Cabreúva	0,001	0,002	0,003	0,004
Superior	Itu	0,036	0,042	0,050	0,058
(SB-MTS)	Salto	0,000	0,000	0,000	0,000
	São Roque	0,029	0,041	0,056	0,071
Total SB-MTS		0,066	0,085	0,109	0,133


Figura 2.2-31 Evolução da Demanda para Outros Usos Sub-Bacia Médio Tietê Superior

Quadro 2.2-29 Projeção da Demanda para Outros Usos Sub-Bacia Alto Sorocaba

Sub-Bacia	Município	I		outros Usos ³/s)	5
	•	2016	2020	2025	2030
Alto Sorocaba	Ibiúna	0,002	0,003	0,004	0,006
(SB-AS)	Vargem Grande Paulista	0,006	0,010	0,014	0,019
Total SB-AS		0,008	0,013	0,019	0,025

Figura 2.2-32 Evolução da Demanda para Outros Usos Sub-Bacia Alto Sorocaba

2.3 Disponibilidade de Recursos Hídricos

A disponibilidade de recursos hídricos na UGRHI-10 não deve sofrer alterações ao longo do tempo, considerando que não existem projetos que possam interferir na disponibilidade hídrica futura.

Assim, os dados relativos à disponibilidade de recursos hídricos na UGRHI-10 são aqueles apontados na Parte I desse Plano – Diagnóstico. Esses dados constam do **Quadro 2.3-1**, e encontram-se ilustrados nas **Figuras 2.3-1** e **2.3-2**, relativas às disponibilidades de água superficial e subterrânea, respectivamente.

Para as águas superficiais são apontadas as disponibilidades considerando a vazão de sete dias consecutivos com período de retorno de 10 anos ($Q_{7,10}$), a vazão de permanência no curso de água em 95% do tempo ($Q_{95\%}$) e a vazão média (Q_M). Essas vazões foram estimadas com base no método de regionalização hidrológica adotado pelo DAEE.

Quadro 2.3-1 Disponibilidade Hídrica UGRHI-10 e Sub-Bacias

Sub-Bacias	Q _{7,10} (m ³ /s)	Q _{95%} (m ³ /s)	Q _{médio} (m³/s)	Reserva Explotável (m³/s)
SB1-MTI	9,04	14,11	35,93	5,07
SB2-MTM	2,68	4,55	12,65	1,87
SB3-BS	6,87	11,27	30,03	4,39
SB4-MS	2,51	4,36	12,13	1,85
SB5-MTS	3,11	5,20	14,30	2,09
SB6-BS	5,63	8,37	20,17	2,73
UGRHI-10	29,85	47,86	125,21	18,01

Observa-se que a sub-bacia do Médio Sorocaba, que abriga o maior contingente populacional da UGRHI-10, é aquela que apresenta a menor disponibilidade hídrica, tanto superficial, como subterrânea, se configurando como uma área crítica para a gestão de recursos hídricos.

Figura 2.3-2 Disponibilidade de Águas Superficiais Sub-Bacias UGRHI-10

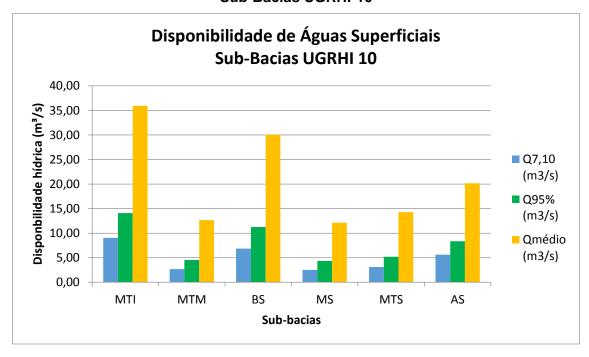
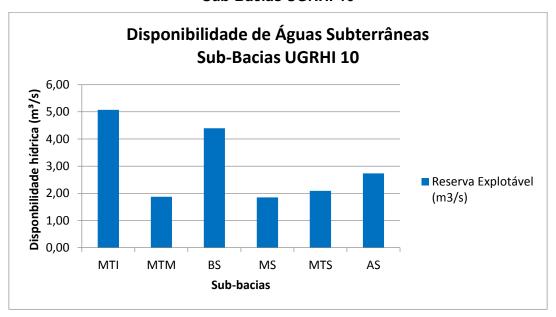



Figura 2.3-2 Disponibilidade de Águas Subterrâneas Sub-Bacias UGRHI-10

2.4 Balanço - Demanda versus Disponibilidade de Recursos Hídricos

2.4.1 Demanda Total versus Disponibilidade de Águas Superficiais

Para a análise do balanço entre demanda total (superficial e subterrânea) e a disponibilidade de águas superficiais, os dados de demanda em cada sub-bacia foram relacionados com as vazões de sete dias consecutivos com período de retorno de 10 anos ($Q_{7,10}$), a de permanência no curso de água em 95% do tempo ($Q_{95\%}$) e a média (Q_{M}).

Os resultados obtidos foram comparados com os valores de referência adotados pela Agência Nacional de Águas, adaptados pelo CRHi (**Quadro 2.4-1**) permitindo a identificação de áreas críticas.

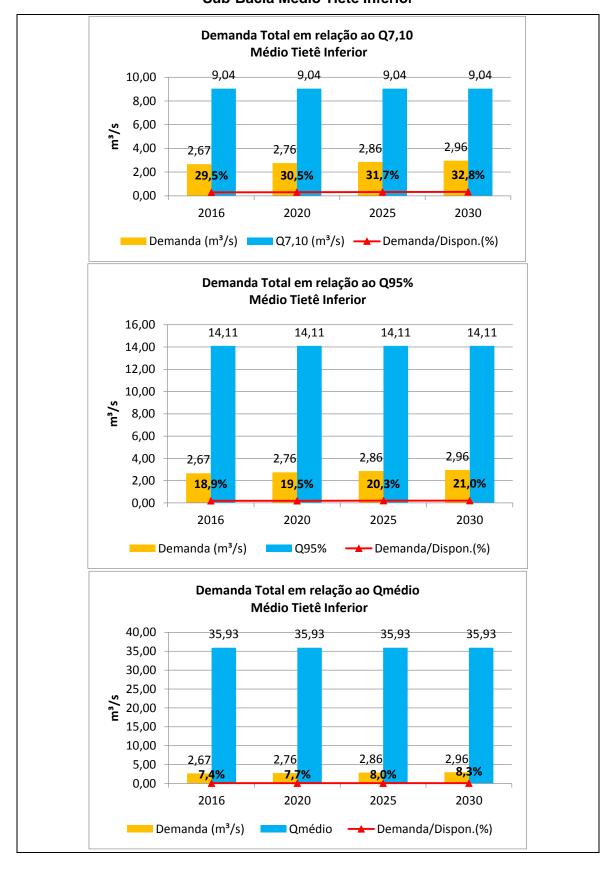
Quadro 2.4-1 Valores de Referência: Demanda e Disponibilidade

Classificação	Demanda total em relação a Q7,10	Demanda total em relação a Q95%	Demanda total em relação a Qmédia
Boa	<30%	<30%	<10%
Atenção	30 a 50 %	30 a 50 %	10 a 20 %
Crítica	>50%	>50%	>20%

A projeção da relação entre as demandas totais (vazões outorgadas) e disponibilidade hídrica, para as sub-bacias que integram a UGRHI-10 são mostradas nos **Quadros 2.4-2** a **2.4-7**.

Quadro 2.4-2 Projeção da Demanda Total em relação às Vazões (Q_{7,10}, Q_{95%} e Q_{médio}) Sub-Bacia Médio Tietê Inferior

MÉDIO TIETÊ INFERIOR					
Anos	2016	2020	2025	2030	
Demanda Total (m³/s)	2,67	2,76	2,86	2,96	
Demanda Total em relação ao Q _{7,10}					
Q _{7,10} (m³/s)	9,04	9,04	9,04	9,04	
Demanda/Disponibilidade (%)	29,5%	30,5%	31,7%	32,8%	
Demanda Tot	al em rela	ção ao Q ₉₅	5%		
Q 95%	14,11	14,11	14,11	14,11	
Demanda/Disponibilidade (%)	18,9%	19,5%	20,3%	21,0%	
Demanda Total em relação ao Q _{médio}					
Q _{médio}	35,93	35,93	35,93	35,93	
Demanda/Disponibilidade (%)	7,4%	7,7%	8,0%	8,3%	


No Médio Tietê Inferior a relação entre as demandas (vazões outorgadas) e as vazões médias, no período considerado, pode ser enquadrado como boa, uma vez que se mantém abaixo de 10%.

Essa classificação se mantém se tomarmos por base a vazão de permanência de 95%, que esteve abaixo de 30%, de acordo com os valores de referência considerados.

Considerando esse critério, se tomarmos por base a vazão mínima ($Q_{7,10}$) a situação merece atenção, notadamente a partir do ano de 2020, quando a relação demanda disponibilidade supera o valor de 30%, ainda que mantenha-se abaixo de 50%. A **Figura 2.4-1** ilustra essa situação.

Nesse contexto é importante ressaltar que o Município de Botucatu utiliza o rio Pardo, situado na UGRHI-17 (Médio Paranapanema), como manancial de abastecimento, diminuindo a pressão sobre os recursos hídricos superficiais disponíveis nesta subbacia.

Figura 2.4-1 Demanda Total em relação às Vazões (Q7,10, Q95% e Qmédio) Sub-Bacia Médio Tietê Inferior

Quadro 2.4-3 Projeção da Demanda Total em relação às Vazões (Q_{7,10}, Q_{95%} e Q_{médio}) Sub-Bacia Médio Tietê Médio

MÉDIO TIETÊ MÉDIO					
Anos	2016	2020	2025	2030	
Demanda Total (m³/s)	1,51	1,59	1,70	1,79	
Demanda Total em relação ao Q _{7,10}					
Q _{7,10} (m³/s)	2,68	2,68	2,68	2,68	
Demanda/Disponibilidade (%)	56,36%	59,43%	63,22%	66,89%	
Demanda Tot	tal em rela	ção ao Q ₉₅	i%		
Q 95%	4,55	4,55	4,55	4,55	
Demanda/Disponibilidade (%)	33,20%	35,01%	37,23%	39,40%	
Demanda Total em relação ao Q _{médio}					
Q _{médio}	12,65	12,65	12,65	12,65	
Demanda/Disponibilidade (%)	11,95%	12,60%	13,40%	14,18%	

As demandas totais no Médio Tietê Médio são influenciadas pela alta demanda industrial nesta sub-bacia, que representa cerca de 60% da demanda total, como anteriormente apontado.

Tomando por base as relações entre as demandas totais e as vazões médias, ao longo do período analisado, verifica-se que os valores encontrados permitem classificá-las como de atenção, uma vez que estiveram entre 10% e 20%.

Considerando as vazões de permanência de 95%, as relações demanda/disponibilidade obtidas também se classificam em estado de atenção (Demanda Total/Q_{95%}) entre 30 e 50%.

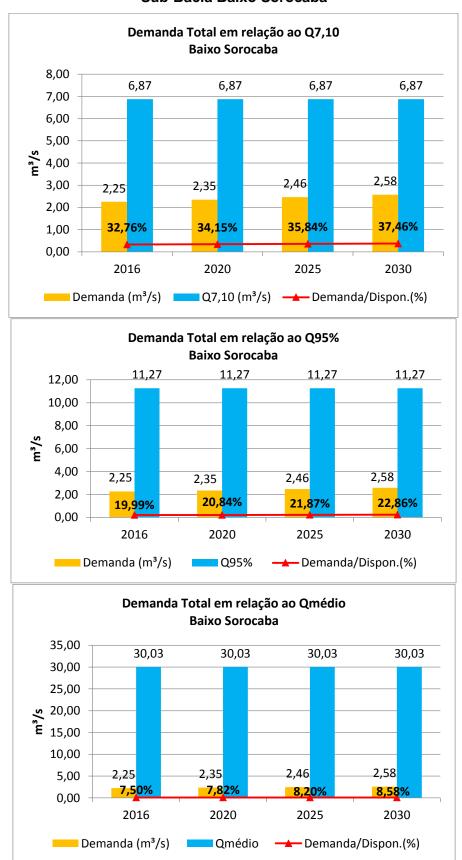
Por sua vez, as relações entre as demandas totais e as vazões mínimas $(Q_{7,10})$ evidenciam uma situação crítica (valores superiores a 50%), ao longo de todo o período analisado.

Na **Figura 2.4-2** é possível visualizar as demandas totais e disponibilidade hídrica superficial ($Q_{7,10}$, $Q_{95\%}$ e $Q_{média}$), bem como a relação entre elas, no Médio Tietê Médio.

Figura 2.4-2 Demanda Total em relação às Vazões (Q7,10, Q95% e Qmédio) Sub-Bacia Médio Tietê Médio

Quadro 2.4-4 Projeção da Demanda Total em relação às Vazões (Q_{7,10}, Q_{95%} e Q_{médio}) Sub-Bacia Baixo Sorocaba

BAIXO SOROCABA					
Anos	2016	2020	2025	2030	
Demanda Total (m³/s)	2,25	2,35	2,46	2,58	
Demanda Total em relação ao Q _{7,10}					
Q _{7,10} (m³/s)	6,87	6,87	6,87	6,87	
Demanda/Disponibilidade (%)	32,76%	34,15%	35,84%	37,46%	
Demanda Tot	al em rela	ção ao Q ₉₅	i%		
Q 95%	11,27	11,27	11,27	11,27	
Demanda/Disponibilidade (%)	19,99%	20,84%	21,87%	22,86%	
Demanda Total em relação ao Q _{médio}					
Q _{médio}	30,03	30,03	30,03	30,03	
Demanda/Disponibilidade (%)	7,50%	7,82%	8,20%	8,58%	


Ao longo do período analisado, as relações entre as demandas totais e as vazões médias, estiveram abaixo de 10% evidenciando uma boa situação adotando-se esse valor de referência.

A situação também pode ser classificada como boa considerando as relações entre as demandas e as vazões de permanência de 95% que estiveram abaixo de 30%, no período em questão.

Por sua vez, as relações entre as demandas totais e as vazões mínimas $(Q_{7,10})$ evidenciam uma situação de atenção (valores superiores a 30%), ao longo de todo o período analisado.

A **Figura 2.4-3** apresenta esses parâmetros para a sub-bacia do Baixo Sorocaba.

Figura 2.4-3 Demanda Total em relação às Vazões (Q7,10, Q95% e Qmédio) Sub-Bacia Baixo Sorocaba

Quadro 2.4-5 Projeção da Demanda Total em relação às Vazões ($Q_{7,10}$, $Q_{95\%}$ e $Q_{médio}$) Sub-Bacia Médio Sorocaba

MÉDIO SOROCABA						
Anos	2016	2020	2025	2030		
Demanda Total (m³/s)	4,20	4,42	4,65	4,84		
Demanda Total em relação ao Q _{7,10}						
Q _{7,10} (m³/s)	2,51	2,51	2,51	2,51		
Demanda/Disponibilidade (%)	167,33%	175,90%	185,11%	192,60%		
Demanda Tot	tal em rela	ção ao Q ₉₅	i%			
Q 95%	4,36	4,36	4,36	4,36		
Demanda/Disponibilidade (%)	96,33%	101,26%	106,56%	110,88%		
Demanda Total em relação ao Q _{médio}						
Q _{médio}	12,13	12,13	12,13	12,13		
Demanda/Disponibilidade (%)	34,65%	36,42%	38,33%	39,88%		

No Médio Sorocaba a situação pode ser considerada crítica tomando por base as relações entre as demandas totais e a disponibilidade hídrica obtidas nas projeções realizadas (período 2016-2030), qualquer que seja a vazão adotada. Essa situação pode ser visualizada na **Figura 2.4-4**.

Os municípios de Sorocaba e Votorantim, que apresentam as maiores demandas nesta sub-bacia, notadamente para abastecimento público, utilizam as vazões regularizadas pelo reservatório de Itupararanga, situado na sub-bacia do Alto Sorocaba.

Figura 2.4-4 Demanda Total em relação às Vazões (Q_{7,10}, Q_{95%} e Q_{médio}) Sub-Bacia Médio Sorocaba

Quadro 2.4-6 Projeção da Demanda Total em relação às Vazões (Q_{7,10}, Q_{95%} e Q_{médio})
Sub-Bacia Médio Tietê Superior

MÉDIO TIETÊ SUPERIOR					
Anos	2016	2020	2025	2030	
Demanda Total (m³/s)	1,68	1,78	1,90	1,91	
Demanda Total em relação ao Q _{7,10}					
Q _{7,10} (m³/s)	3,11	3,11	3,11	3,11	
Demanda/Disponibilidade (%)	53,98%	57,10%	60,89%	61,41%	
Demanda To	tal em rela	ção ao Q ₉₅	5%		
Q 95%	5,20	5,20	5,20	5,20	
Demanda/Disponibilidade (%)	32,29%	34,15%	36,42%	36,73%	
Demanda Total em relação ao Q _{médio}					
Q _{médio}	14,30	14,30	14,30	14,30	
Demanda/Disponibilidade (%)	11,75%	12,43%	13,25%	13,36%	

As relações entre as demandas totais e as vazões médias, ao longo do período analisado no Médio Tietê Superior, estiveram entre 10 e 20% evidenciando a necessidade de atenção se utilizarmos os valores de referência que constam do **Quadro 2.4-1**.

Considerando o período 2016 a 2030, a situação também pode ser classificada de atenção considerando as relações entre as demandas e as vazões de permanência de 95%que estiveram entre 30 e 50%.

Por sua vez, é de criticidade se tomarmos por base as relações entre as demandas totais e as vazões mínimas ($Q_{7,10}$) uma vez que que estas relações encontram acima de 50% em todo o período de análise.

A Figura 2.4-5 apresenta esses parâmetros para a sub-bacia do Médio Tietê Superior.

Como anteriormente apontado as demandas relativas ao abastecimento urbano e industrial do muncípio de Salto não foram consideradas nessas projeções uma vez que essas águas são captadas na UGRHI-05 (Piracicaba/Capivari/Jundiaí)

É importante ainda considerar que essa sub-bacia é drenada pelo rio Tietê no trecho que recebe as cargas poluidoras do Alto Tietê (UGRHI-06) e pelos rios Jundiaí e Capivari (UGRHI-05), o que compromete a qualidade de suas águas, inviabilizando a disponibilidade para diversos usos.

Figura 2.4-5 Demanda Total em relação às Vazões (Q_{7,10}, Q_{95%} e Q_{médio}) Sub-Bacia Médio Tietê Superior

Quadro 2.4-7 Projeção da Demanda Total em relação às Vazões ($Q_{7,10}$, $Q_{95\%}$ e $Q_{médio}$) - Sub-Bacia Alto Sorocaba

SUB-BACIA ALTO SOROCABA					
Anos	2016	2020	2025	2030	
Demanda Total (m³/s)	0,43	0,50	0,59	0,68	
Demanda Total em relação ao Q _{7,10}					
Q _{7,10} (m³/s)	5,63	5,63	5,63	5,63	
Demanda/Disponibilidade (%)	7,68%	8,95%	10,50%	12,01%	
Demanda Tot	al em rela	ção ao Q ₉₅	i%		
Q 95%	8,37	8,37	8,37	8,37	
Demanda/Disponibilidade (%)	5,18%	6,02%	7,07%	8,09%	
Demanda Total em relação ao Q _{médio}					
Q _{médio}	20,17	20,17	20,17	20,17	
Demanda/Disponibilidade (%)	2,15%	2,50%	2,93%	3,36%	

No Alto Sorocaba as projeções das demandas/disponibilidades, em todos os cenários considerados, apontam para uma condição classificada como boa. Na **Figura 2.4-6** é possível visualizar essa situação

No entanto, esse quadro deve ser analisado com reservas considerando que as demandas rurais, notadamente no município de Ibiúna encontram-se subdimensionadas, conforme anteriormente apontado.

Figura 2.4-6 Demanda Total em relação às Vazões (Q_{7,10}, Q_{95%} e Q_{médio}) Sub-Bacia Alto Sorocaba

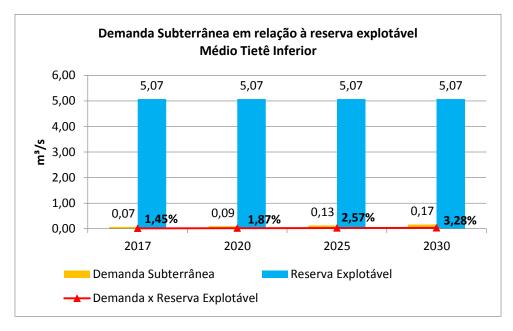
2.4.2 Demanda Subterrânea em relação às Reservas Explotáveis

Os resultados obtidos no balanço da demanda subterrânea em relação às reservas explotáveis foram comparados com os valores de referência adotados pelo PERH 2004-2007 e adaptados pelo CRHi (**Quadro 2.4-8**).

Quadro 2.4-8 Valores de Referência - Demanda Subterrânea em relação às Reservas Explotáveis

Classificação	Demanda subterrânea em relação às reservas explotáveis
Boa	<30%
Atenção	≥30 e ≤50 %
Crítica	>50%

Fonte: CRHi,2017

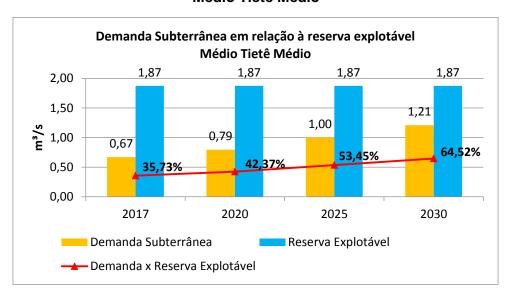

Os **Quadros 2.4-9** a **2.4-14** contém as projeções das demandas subterrâneas em relação às reserva explotáveis para as sub-bacias que compõem a UGRHI-10, que podem ser visualizadas nas **Figuras 2.4-7** a **2.4-12**.

Quadro 2.4-9 Demanda Subterrânea em relação à Reserva Explotável Médio Tietê Inferior

MÉDIO TIETÊ INFERIOR					
Anos 2016 2020 2025 2030					
Demanda Subterrânea (m³/s)	0,07	0,09	0,13	0,17	
Reserva Explotável (m³/s)	5,07	5,07	5,07	5,07	
Demanda x Reserva Explotável	1,45%	1,87%	2,57%	3,28%	

No Médio Tietê Inferior as projeções desse parâmetro apontam para uma classificação boa ao longo de todo período analisado.

Figura 2.4-7 Demanda Subterrânea em relação à Reserva Explotável Médio Tietê Inferior

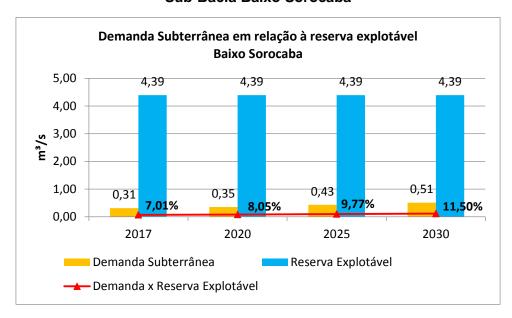


Quadro 2.4-10 Demanda Subterrânea em relação à Reserva Explotável Médio Tietê Médio

MÉDIO TIETÊ MÉDIO					
Anos 2016 2020 2025 2030					
Demanda Subterrânea (m³/s)	0,67	0,79	1,00	1,21	
Reserva Explotável (m³/s)	1,87	1,87	1,87	1,87	
Demanda x Reserva Explotável	35,73%	42,37%	53,45%	64,52%	

No período 2016-2020 o cenário aponta para uma classificação que exige atenção, verificando-se que nos demais períodos a situação é de criticidade.

Figura 2.4-8 Demanda Subterrânea em relação à Reserva Explotável Médio Tietê Médio

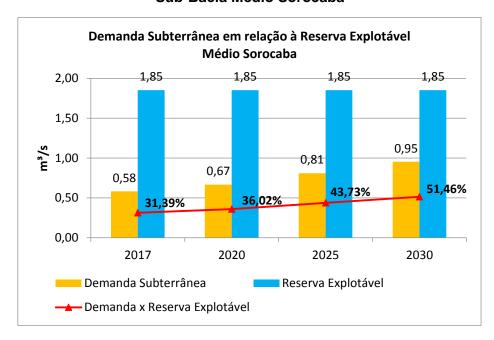


Quadro 2.4-11 Demanda Subterrânea em relação à Reserva Explotável Sub-Bacia Baixo Sorocaba

BAIXO SOROCABA							
Anos 2016 2020 2025 2030							
Demanda Subterrânea (m³/s)	0,31	0,35	0,43	0,51			
Reserva Explotável (m³/s)	4,39	4,39	4,39	4,39			
Demanda x Reserva Explotável	7,01%	8,05%	9,77%	11,50%			

As projeções desse parâmetro no Baixo Sorocaba apontam para uma classificação boa ao longo de todo período analisado.

Figura 2.4-9 Demanda Subterrânea em relação à Reserva Explotável Sub-Bacia Baixo Sorocaba

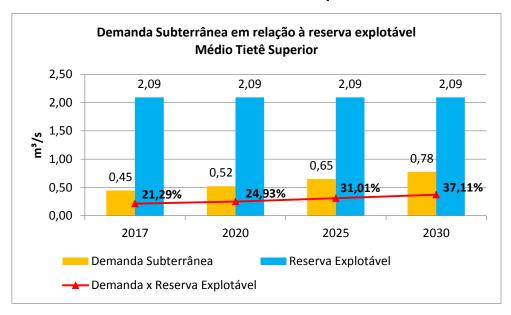


Quadro 2.4-12 Demanda Subterrânea em relação à Reserva Explotável Sub-Bacia Médio Sorocaba

MÉDIO SOROCABA							
Anos 2016 2020 2025 2030							
Demanda Subterrânea (m³/s)	0,58	0,67	0,81	0,95			
Reserva Explotável (m³/s)	1,85	1,85	1,85	1,85			
Demanda x Reserva Explotável	31,39%	36,02%	43,73%	51,46%			

No período 2016-2025 o cenário aponta para uma classificação que exige atenção, verificando-se uma evolução para uma situação de criticidade até 2030.

Figura 2.4-10 Demanda Subterrânea em relação à Reserva Explotável Sub-Bacia Médio Sorocaba

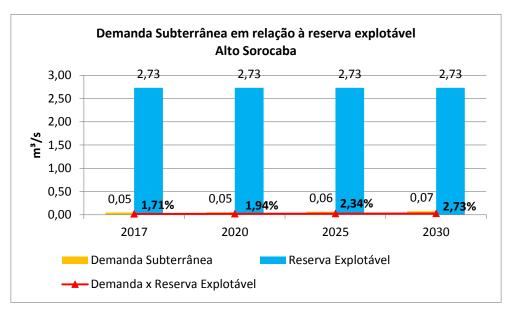


Quadro 2.4-13 Demanda Subterrânea em relação à Reserva Explotável Sub-Bacia Médio Tietê Superior

MÉDIO TIETÊ SUPERIOR							
Anos 2016 2020 2025 2030							
Demanda Subterrânea (m³/s)	0,45	0,52	0,65	0,78			
Reserva Explotável (m³/s)	2,09	2,09	2,09	2,09			
Demanda x Reserva Explotável	21,29%	24,93%	31,01%	37,11%			

No período 2016-2020 o cenário aponta para uma classificação boa, evoluindo para uma situação que exige atenção nos demais períodos.

Figura 2.4-11 Demanda Subterrânea em relação à Reserva Explotável Sub-Bacia Médio Tietê Superior



Quadro 2.4-14 Demanda Subterrânea em relação à Reserva Explotável Sub-Bacia Alto Sorocaba

SUB-BACIA ALTO SOROCABA							
Anos 2016 2020 2025 2030							
Demanda Subterrânea (m³/s)	0,45	0,52	0,65	0,78			
Reserva Explotável (m³/s)	2,09	2,09	2,09	2,09			
Demanda x Reserva Explotável	21,29%	24,93%	31,01%	37,11%			

No Alto Sorocaba o cenário aponta para uma classificação boa no período 2016-2020, evoluindo para uma situação que exige atenção nos demais períodos.

Figura 2.4-12 Demanda Subterrânea em relação à Reserva Explotável Sub-Bacia Alto Sorocaba

2.4.3 Quadro Resumo

De forma a permitir uma melhor visualização do cenário entre as demandas totais e as disponibilidades, no período considerado, são apresentadas no **Quadro 2.4-15** o resumo da classificação obtida a partir das projeções efetuadas em cada uma das subbacias que compõem a UGRHI-10.

Por sua vez, classificação obtida a partir das projeções efetuadas para as demandas subterrâneas em relação às reservas explotáveis nas sub-bacias que compõem a UGRHI-10 encontram-se resumidas no **Quadro 2.4-16**.

Quadro 2.4-15 Classificação: Demandas Totais versus Disponibilidade

Demondo/Dienenibilidade	2016	2020	2025	2020	
Demanda/Disponibilidade	2010	2020	2025	2030	
Médio Tietê Inferior					
Demanda Total em relação ao Q _{7,10}	Boa	Atenção	Atenção	Atenção	
Demanda Total em relação ao Q _{95%}	Boa	Boa	Boa	Boa	
Demanda Total em relação ao Q _{médio}	Boa	Boa	Boa	Boa	
Médio	Tietê Méd	io			
Demanda Total em relação ao Q _{7,10}	Crítica	Crítica	Crítica	Crítica	
Demanda Total em relação ao Q _{95%}	Atenção	Atenção	Atenção	Atenção	
Demanda Total em relação ao Q _{médio}	Atenção	Atenção	Atenção	Atenção	
Baixo Sorocaba					
Demanda Total em relação ao Q _{7,10}	Atenção	Atenção	Atenção	Atenção	
Demanda Total em relação ao Q _{95%}	Boa	Boa	Boa	Boa	
Demanda Total em relação ao Q _{médio}	Boa	Boa	Boa	Boa	
Médi	o Sorocaba	a			
Demanda Total em relação ao Q _{7,10}	Crítica	Crítica	Crítica	Crítica	
Demanda Total em relação ao Q _{95%}	Crítica	Crítica	Crítica	Crítica	
Demanda Total em relação ao Q _{médio}	Crítica	Crítica	Crítica	Crítica	
Médio Tietê Superior					
Demanda Total em relação ao Q _{7,10}	Crítica	Crítica	Crítica	Crítica	
Demanda Total em relação ao Q _{95%}	Atenção	Atenção	Atenção	Atenção	
Demanda Total em relação ao Q _{médio}	Atenção	Atenção	Atenção	Atenção	
Alto Sorocaba					
Demanda Total em relação ao Q _{7,10}	Boa	Boa	Boa	Boa	
Demanda Total em relação ao Q _{95%}	Boa	Boa	Boa	Boa	
Demanda Total em relação ao Q _{médio}	Boa	Boa	Boa	Boa	

Quadro 4.2-16 Classificação: Demanda Subterrânea em relação às Reservas Explotáveis

Sub-Bacias	2016	2020	2025	2030
Médio Tietê Inferior	Boa	Boa	Boa	Boa
Médio Tietê Médio	Atenção	Atenção	Crítica	Crítica
Baixo Sorocaba	Boa	Boa	Boa	Boa
Médio Sorocaba	Atenção	Atenção	Atenção	Crítica
Médio Tietê Superior	Boa	Boa	Atenção	Atenção
Alto Sorocaba	Boa	Boa	Atenção	Atenção

Referências

BRASIL. AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. OPERADOR NACIONAL DO SISTEMA ELÉTRICO. Estimativa das Vazões para Atividades de Uso Consuntivo da Água nas Principais Bacias do Sistema Interligado Nacional – SIN. Relatório final (Minuta 6). Agencia Nacional das Águas, Agencia Nacional de Energia Elétrica e Ministério de Minas e Energia. 2003.

São Paulo. [DAEE] Departamento de Águas e Energia Elétrica. Plano Diretor de Aproveitamento de Recursos Hídricos para a Macrometrópole Paulista, no Estado de São Paulo. Relatório Final. DAEE/COBRAPE, 2013.

São Paulo. CRH. Deliberação CRH n°146 de 2012. Relatório de Situação dos Recursos Hídricos da Bacia Hidrográfica. Roteiro para Elaboração e Fichas Técnicas dos Parâmetros. São Paulo: CRH, 2017.