2.5 Qualidade das Águas

Neste item são apresentadas inferências acerca da tendência de evolução da qualidade das águas superficiais e subterrâneas. Para tanto, buscou-se informações constantes nos documentos produzidos pela Fundação Agência de Bacia Hidrográfica do Rio Sorocaba e Médio Tietê e nas publicações da CETESB.

2.5.1 Qualidade das Águas Superficiais

As informações sobre a qualidade das águas superficiais na UGRHI 10, atualizadas até 2015, constam do Relatório I – Informações Básicas, Plano de Bacia Hidrográfica 2016-2027, Fundação Agência de Bacia Hidrográfica do Rio Sorocaba e Médio Tietê – Diagnóstico.

Foram utilizadas ainda as informações que constam do relatório de qualidade das águas interiores no estado de São Paulo, publicado pela CETESB em 2017, onde constam os resultados do monitoramento realizado em 2016.

De forma a subsidiar a avaliação das tendências de evolução foram avaliados os índices de qualidade da água (IQA), de qualidade de água para fins de abastecimento público (IAP), de preservação da vida aquática (IVA) e de estado trófico (IET), atualizadas até o ano de 2016.

a) Índice de Qualidade das Águas - IQA

A UGRHI 10 possui 25 pontos de amostragem para os quais são calculados os Índices de Qualidade da Água - IQA. Na **Figura 2.5-1** é possível visualizar a evolução anual dos resultados do IQA, por categoria, para o período 2011-2016.

Figura 2.5-1 - Evolução das Médias Anuais do IQA UGRHI-10

Fonte: adaptado de CETESB, 2017a

Observa-se que em 2016 houve um maior número de pontos na categoria boa, quando comparado aos cinco anos anteriores. Comparando os dados de 2016 com os

resultados dos anos de 2014 e 2015, quando se registrou uma estiagem histórica, verifica-se um aumento no número de pontos enquadrados na categoria Ótima e Boa, indicando uma melhora na qualidade da água.

O **Quadro 2.5-1** mostra os valores das médias anuais do IQA para os pontos de amostragem situados na UGRHI-10, distribuídos nas sub-bacias.

Quadro 2.5-1 Médias Anuais do IQA por Ponto de Amostragem UGRHI-10

0	5	M			An	os		
Corpo Hídrico	Ponto	Município	2011	2012	2013	2014	2015	2016
	SUB-B	ACIA MÉDIO TIET	Ê INFER	IOR (M	ΓΙ)			
Res. Barra Bonita	TIBB 02100	Botucatu	72	76	70	58	67	71
Res. Barra Bonita	TIBB 02700	São Manuel	77	78	76	69	67	77
Braço do Rio Tietê	TIBT 02500	Botucatu	49	55	55	50	62	62
Rio Tietê	TIET 02450	Laranjal Paulista	33	33	27	24	28	35
Rio das Conchas	COCH 02850	Conchas	33	52	50	41	48	55
Rio do Peixe	EIXE 02225	Conchas	66	73	66	68	64	68
	SUB-E	SUB-BACIA MÉDIO TIETÉ		O (MTM	l)			
Rio Tietê	TIET02400	Tietê	30	34	25	24	25	31
	SUB	-BACIA BAIXO SC	ROCAE	BA (BS)				
Rio Sorocaba	SORO 02500	Tatuĺ	66	70	65	59	61	63
Rio Sorocaba	orocaba SORO 02700 Cerquilho				58	53	50	62
Rio Sorocaba	SORO 02900 Laranjal Paulista			63	66	58	61	59
Rio Tatuí	TAUI 04900	Tatuí	38	42	35	31	37	41
Rio Pirapora	PORA 02700	Salto de Pirapora	48	44	52	44	44	50
Rio Sarapuí	SAUI 02900	Iperó	71	75	74	70	66	63
	SUB	-BACIA MÉDIO SC	ROCAE	BA (MS)				
Res. Itupararanga	SOIT 02900	Votorantim	85	91	88	89	88	89
Rio Sorocaba	SORO 02050	Votorantim	52	57	50	51	50	56
Rio Sorocaba	SORO 02100	Sorocaba	43	43	48	43	42	47
Rio Sorocaba	SORO 02200	Sorocaba	35	37	39	33	33	39
Rio Pirajibu	JIBU 02900	Sorocaba	39	41	36	35	36	42
	SUB-BA	CIA MÉDIO TIETÊ	SUPER	IOR (M	ΓS)			
Res. Rasgão	TIRG 02900	Pirapora B. Jesus	17	24	22	17	20	22
Rio Tietê	TIET 02350	Salto	35	36	37	30	29	32
Rib. Pirapitingui	PGUI 02700	Itu					66	66
	SUE	B-BACIA ALTO SO	ROCAB	A (AS)				
Rio Una	BUNA 02900	Ibiúna	50	46	58	58	46	51
Rio Sorocabuçu	SOBU 02800	Ibiúna	67	65	62	67	61	65
Rio Sorocamirim	SOMI 02850	São Roque	66	70	65	66	63	69
Res. Itupararanga	SOIT 02100	Ibiúna	86	85	89	87	81	87

	LEGENDA								
Ótima	Boa	Regular	Ruim	Péssima					

Fonte: CETESB, 2017a

Analisando os dados da evolução anual dos resultados do IQA, para o período 2011-2016, em cada um dos pontos de monitoramento inseridos na UGRHI 10, foi possível identificar os pontos onde se concentra os maiores problemas em relação a esse índice.

Os pontos situados no rio Tietê, inseridos nas sub-bacias do Médio Tietê Superior (TIT02350, TIRG02900), Médio Tietê Médio (TIT02400) e Médio Tietê Inferior (TIT0450) foram os que apresentaram maior número de valores de IQA enquadrados nas categorias Ruim e Péssima. A qualidade das águas nesses pontos do rio Tietê é fortemente influenciada pela carga poluidora oriunda da Região Metropolitana de São Paulo, e seus afluentes na margem direita, rios Jundiaí e Capivari.

Os pontos de amostragem localizados nos rios Sorocaba (SOR02200) e Pirajibu (JIBU02900) também apresentaram resultados de IQA enquadrados na categoria Ruim, ainda que em 2016 esses resultados tenham sido enquadrados na categoria Regular. É importante notar que esses pontos de amostragem estão situados a jusante da área urbana do Município de Sorocaba. Situação semelhante foi verificada no rio Tatuí (TAUI 04900), situado a jusante da área urbana do município de mesmo nome.

b) Índice de Qualidade de Agua para fins de Abastecimento Público - IAP

Na UGRHI 10 o IAP é calculado para sete pontos da rede de amostragem. Nesses pontos ocorre a captação de água para abastecimento público. Na **Figura 2.5-2** é possível visualizar a evolução do IAP no período 2011 a 2016.

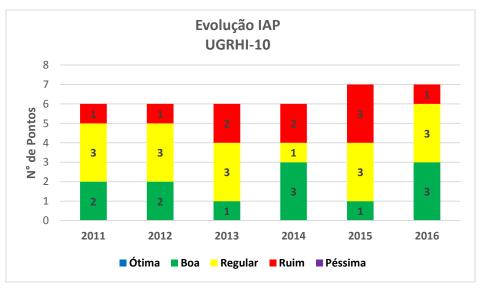


Figura 2.5-2 - Evolução das Médias Anuais do IAP UGRHI-10

Fonte: adaptado de CETESB, 2017a

Observa-se uma tendência de melhoria do IAP em 2016 em relação aos anos anteriores. Deve-se considerar que os anos de 2014 e 2015 foram caracterizados por forte estiagem, com influências nos valores do IAP.

O **Quadro 2.5-2** mostra as médias anuais do IAP nos pontos de amostragem que constam do relatório da CETESB (2017a).

Quadro 2.5-2 Médias Anuais do IAP por Ponto de Amostragem UGRHI-10

Carno Hidriaa	Donto			An	os				
Corpo Hídrico	Ponto	wunicipi	Município -		2012	2013	2014	2015	2016
	SUI	B-BACIA BAIX	o so	ROCAE	BA (BS)				
Rio Sorocaba	SORO 02700	Cerquilho		48	32	31	33	20	35
Rio Pirapora PORA 02700 Salto de Pirapora					42	59	34	21	40
Rio Sarapuí	SAUI 02900	Iperó		53	54	47	37	26	40
	SUB-BACIA MÉDIO S								
Res. Itupararanga	SOIT 02900	Votorantim		37	48	60	58	52	65
	SUB-B	ACIA MÉDIO 1	ΓΙΕΤÊ	SUPER	IOR (M	TS)			
Rib. Pirapitingui	PGUI 02700	Itu						38	59
	SU	B-BACIA ALT	o so	ROCAB	A (AS)				
Rio Sorocabuçu	SOBU 02800	Ibiúna		59	52	27	60	37	58
Rio Sorocamirim	SOMI 02850	São Roque		43	50	44	56	40	49
Γ			LEC	GENDA					
	Ótima	Boa	Re	qular	R	uim	Péss	sima	

Fonte: CETESB, 2017a

Avaliando a evolução das médias anuais do IAP é possível observar que as situações mais críticas em relação ao IAP foram detectadas nos pontos de amostragem SORO02700 e PORA02700.

De fato, o ponto de captação de água de Cerquilho no rio Sorocaba (SORO02700) tem apresentado um IAP médio anual enquadrado na condição Ruim em 85% do tempo analisado. De acordo com a CETESB (2017a) a qualidade ruim do IAP nesse ponto, em 2016, foi influenciada pelo Potencial de Formação de Trihalometanos (PFTHM), que está associado ao carreamento de partículas orgânicas para os corpos de água.

Por sua vez, o rio Pirapora, no ponto de captação para abastecimento de água de Salto de Pirapora (PORA02700) teve o IAP médio anual enquadrado na condição Ruim em 43% do tempo analisado, também influenciado pelo PFTHA além das variáveis que compõem o IQA.

c) Índice de Qualidade das Águas para a Proteção da Vida Aquática - IVA

O IVA é calculado na UGRHI 10, para 20 pontos de amostragem. Na **Figura 2.5-3** é possível visualizar a evolução das médias anuais do IVA no período 2011 a 2016, onde observa-se que em 2016 ocorreu uma redução dos índices Ruim e Péssimo de cerca de 50%.

Evolução do IVA UGRHI-10 **N° de Pontos** 10 **■** Ótima **■** Boa Regular ■ Ruim ■ Péssima

Figura 2.5-3 - Evolução das Médias Anuais do IVA UGRHI-10

Fonte: adaptado de CETESB, 2017a

O **Quadro 2.5-3** mostra as médias anuais do IVA nos pontos de amostragem que constam do relatório da CETESB (2017a).

Verifica-se que os valores médios anuais do IVA enquadrados nas categorias de Ruim e Péssimo se concentram, principalmente, nos pontos de amostragem situados no rio Tietê (envolve também o reservatório de Barra Bonita).

No rio Sorocaba, nos pontos situados na sub-bacia do Médio Sorocaba, predominam valores de IVA classificados como Ruim.

No Alto Sorocaba, é importante observar que o IVA calculado para o rio Una, afluente do reservatório de Itupararanga teve seu valor oscilando entre Ruim e Regular. Nos demais afluentes analisados (rios Sorocamirim e Sorocabuçu) a situação é mais confortável no que diz respeito a este índice.

O reservatório de Itupararanga predominam valores de IVA enquadrados na categoria Regular.

Quadro 2.5-3 Médias Anuais do IVA por Ponto de Amostragem

Corno Uídrico	Dente	Município			An	os		
Corpo Hídrico	Ponto	Município	2011	2012	2013	2014	2015	2016
	SUB-B	ACIA MÉDIO TIET	Ê INFER	IOR (M	ΓΙ)			
Res. Barra Bonita	TIBB 02100	Botucatu	4,2	4,6	5,7	7,1	5,6	4,6
Res. Barra Bonita	TIBB 02700	São Manuel	4,7	4,6	5,1	7,1	6,4	4,3
Braço do Rio Tietê	TIBT 02500	Botucatu	7,9	5,2	6,0	7,2	6,3	6,3
Rio Tietê				8,7	7,9	8,4	8,1	7,0
Rio das Conchas	COCH 02850	Conchas	7,6	4,5	5,7	6,3	4,3	4,4
Rio do Peixe EIXE 02225 Conchas			3,2	3,0	3,1	3,5	2,9	3,8
SUB-BACIA BAIXO SO				BA (BS)				
Rio Sorocaba	SORO 02500	Tatuĺ	4,2	3,7	4,0	5,4	4,6	3,5
Rio Sorocaba SORO 02700 Cerquilho				4,0	3,5	5,8	5,4	3,8
Rio Sorocaba	io Sorocaba SORO 02900 Laranjal Paulista		2,8	2,6	2,4	2,9	3,2	3,2
Rio Pirapora	PORA 02700	Salto de Pirapora	2,4	3,6	3,7	5,1	4,6	4,0
Rio Sarapuí	SAUI 02900	Iperó	2,0	2,1	2,1	2,5	3,3	2,8
	SUB	-BACIA MÉDIO SC	ROCAE	BA (MS)				
Res. Itupararanga	SOIT 02900	Votorantim	5,0	5,0	3,6	4,1	4,1	3,5
Rio Sorocaba	SORO 02050	Votorantim			4,8	5,3	6,1	4,8
Rio Sorocaba	SORO 02100	Sorocaba	6,9	6,5	5,6	6,7	6,4	4,7
	SUB-BA	CIA MÉDIO TIETÊ	SUPER	RIOR (M	ΓS)			
Rio Tietê	TIET 02350	Salto	5,8	5,2	5,7	8,4	8,5	6,4
Rib. Pirapitingui	PGUI 02700	Itu					3,5	3,7
	SUE	B-BACIA ALTO SO	ROCAB	A (AS)				
Rio Una	BUNA 02900	Ibiúna	5,0	6,4	4,5	5,0	4,2	3,6
Rio Sorocabuçu	SOBU 02800	Ibiúna	2,7	3,1	3,1	2,5	2,8	2,5
Rio Sorocamirim	SOMI 02850	São Roque	3,3	3,1	3,3	3,6	3,6	3,3
Res. Itupararanga	SOIT 02100 Ibiúna		4,4	4,7	3,8	4,1	4,3	3,8
	<u>f</u>	<u>I</u>						

LEGENDA

Ótima Boa Regular Ruim Péssima

Fonte: CETESB, 2017a

d) Índice de Estado Trófico - IET

Na UGRHI 10 em 2016, dos 24 pontos monitorados, 62% apresentaram condições de baixa a média trofia, enquanto 38% encontram-se eutrofizados.

Os rios Sorocaba, Conchas, Pirajibu, Pirapora e Sarapuí, e os reservatórios de Barra Bonita e Itupararanga contribuíram para esse cenário. No entanto, alguns ainda sugerem indicativos de impactos associados ao lançamento de efluentes domésticos, podendo a carga de fósforo total possa também estar associada, em parte, às atividades industriais e/ou agrícolas.

A **Figura 2.5-4** apresenta a evolução das médias anuais do IET na UGRHI 10, no período 2011 a 2016.

Evolução do IET UGRHI-10 30 25 N° de Pontos 20 2 15 9 10 13 7 5 5 5 7 2011 2012 2013 2014 2015 2016 ■ Ultraoligotrófico ■ Oligotrófico Mesotrófico Eutrófico ■ Supereutrófico ■ Hipereutrófico

Figura 2.5-4 - Evolução das Médias Anuais do IET UGRHI-10

Fonte: adaptado de CETESB, 2017a

Consta do Relatório da CETESB (2017) as médias anuais do IET para os pontos nos quais as tendências de melhora ou piora da qualidade das águas foram significativas em relação à eutrofização no período 2011 a 2016.

Na UGRHI-10 foram avaliados cinco pontos com tendência de piora, que constam do **Quadro 2.5-4**.

Quadro 2.5-4 Tendências do IET UGRHI-10

Corpo	Ponto	Município			An	os			Tendência
Hídrico	Folito	Widilicipio	2011	2012	2013	2014	2015	2016	Terruericia
		SUB-BACIA MÉ	DIO TII	DIO TIETÊ INFERIOR (MTI)					
Rio Tietê	TIET 02450	Laranjal Paulista	60	63	69	71	70	68	Piora
SUB-BACIA			BAIXO	SOROC	ABA (E	3S)			
Rio Sorocaba	SORO 02900	Laranjal Paulista	49	49	49	52	55	53	Piora
Rio Pirapora	PORA 02700	Salto de Pirapora	46	50	53	50	60	59	Piora
Rio Sarapuí	SAUI 02900	Iperó	44	41	44	47	53	52	Piora
	SUB-BACIA M				ERIOR	(MTS)			
Rio Tietê	TIET 02350	Salto	61	54	63	72	67	67	Piora

LEGENDA

Ultraoligotrófico Oligotrófico Mesotrófico Eutrófico Supereutrófico Hipereutrófico

Fonte: CETESB,2017a

Da análise desses dados chama a atenção a tendência de piora nos rios Pirapora e Sarapuí, notadamente deste último, que vinha apresentando valores de IET

classificados como ultraoligotrófico, e nos últimos dois anos apresentou variações negativas.

e) Considerações sobre a Tendências de Evolução da Qualidade das Águas Superficiais na UGRHI-10

A CETESB realizou um avaliação da tendência de melhora e piora da qualidade dos corpos de água objeto de monitoramento, tanto para o Índice de Estado Trófico quanto para o Índice de Qualidade da Água (IQA).

Com relação ao IQA, os resultados apontaram um tendência de piora no rio Sarapuí (SAUI02900) devido ao carreamento de resíduos sólidos. Para os demais pontos a CETESB não aponta nenhuma variação tendencial.

No entanto, é possível inferir que no rio Tietê, a tendência, num cenário otimista, é de manutenção do IQA classificado como Ruim, verificado nos últimos anos. A reversão desse quadro está associado a adoção de medidas de saneamento na RMSP, situada a montante. Observe-se que o rio Tietê e seus principais afluentes, no trecho que drena a região mais densamente ocupada da RMSP vem apresentando, historicamente, valores de IQA variando de ruim a péssimo.

Esse quadro compromete a manutenção da vida aquática nesse curso de água como denotam os valores do IVA calculados.

No que se refere ao IET a avaliação de tendência realizada pela Cetesb apontou pontos de amostragem localizados nos rios Pirapora, Sarapuí e Sorocaba (sub-bacia do Baixo Sorocaba) com tendência de piora.

Esses pontos tem a montante, além da ocupação urbana, intensa atividade agrícola que porte ser responsável pela tendência de comprometimento do estado de trofia desse corpos de água, que deve se manter se não forem adotadas medidas associadas ao tratamento adequado dos esgotos domésticos, efluentes industriais, e, principalmente ao controle de cargas difusas oriundas da atividade agrícola.

Por sua vez, os dois pontos avaliados pela CETESB, quanto à tendência do IET, no rio Tietê, considerados extremamente eutrofizados, devem manter essa tendência.

2.5.2 Qualidade das Águas Subterrâneas

De forma a subsidiar a avaliação da tendência de evolução das águas subterrâneas foram utilizadas as informações que constam do Relatório I – Informações Básicas, Plano de Bacia Hidrográfica 2016-2027, da Fundação Agência de Bacia Hidrográfica do Rio Sorocaba e Médio Tietê – Diagnóstico (FABH-SMT, 2016).

Consta desse relatório que as áreas potencialmente críticas, consideradas como de alta vulnerabilidade, situam-se nos municípios de Tatuí, Capela do Alto, Boituva, Iperó, Sorocaba, Cesário Lange, Laranjal Paulista, Porangaba, Torre de Pedra, Quadra, Bofete, Conchas, Anhembi e Botucatu, correspondente a 8,2% da área da UGRHI.

Dentre essas áreas, as mais vulneráveis estão concentradas na sub-bacia do Baixo Sorocaba, locais de afloramento do Sistema Aquífero Guarani. Nas outras localidades apontadas isso ocorre devido á fragilidade natural do aquífero.

No que se refere ao monitoramento das águas subterrâneas na UGHRI 10, realizado pela CETESB, consta do relatório da FABH-SMT (2016) que o mesmo envolve quatorze pontos, inseridos em quatro aquíferos (Guarani, Tubarão, Pré-Cambriano e Aquiclude Passa Dois).

Doze desses pontos de monitoramento são poços tubulares que captam água para abastecimento público, acrescidos de um poço tubular e uma nascente utilizados para exploração de água mineral.

a) Indicador de Potabilidade das Águas Subterrâneas - IPAS

O monitoramento realizado pela CETESB aponta que, em geral, as águas subterrâneas são adequadas no que se refere à potabilidade.

Entre os anos de 2010 e 2015 o IPAS na UGRHI-10 foi classificado entre Regular e Ótimo, conforme consta do **Quadro 2.5-5**.

Quadro 2.5-5 Indicador de Potabilidade das Águas Subterrâneas na UGRHI-10

Ano	IPAS (%)	Parâmetros Desconformes
2010	90,0	Fluoreto e sódio
2012	65,0	Arsênio, ferro, manganês e bactérias heterotróficas
2013	90,9	Arsênio e manganês
2014	80,8	Fluoreto, arsênio, sódio e manganês
2015	64,3	Fluoreto, arsênio, sódio, ferro, manganês, sulfato, bactérias heterotróficas

Fonte: FABH-SMT, 2016

Observa-se que foram identificados valores desconformes frente aos padrões de potabilidade estabelecidos pela Portaria nº 2.914/2011 do Ministério da Saúde.

O Aquífero Pré-Cambriano apresentou aumento no número de desconformidades para o arsênio no ponto de amostragem de Piedade e para o ferro no município de Mairinque.

Foram verificadas ainda desconformidades de qualidade das águas do Aquífero Tubarão para o manganês (pontos de Capela do Alto e Porto Feliz), e fluoreto e sódio (ponto de Cesário Lange).

No Aquiclude Passa Dois, o ponto de monitoramento localizado no município de Quadra, apresentou valores desconformes para os parâmetros fluoreto e bactérias heterotróficas.

Verificou-se ainda concentrações de nitrato acima do valor de prevenção (5 mg N/L), mas inferiores ao valor máximo permitido (10 mg N/L) no poço localizado em Botucatu, que capta água do aquífero Guarani.

Essas desconformidades encontram-se, em geral, associadas à atividade antrópica, notadamente devido ao saneamento básico inadequado, cargas poluidoras industriais, e cargas difusas de origem urbana e rural.

b) Considerações acerca da Tendência de Evolução da Qualidade das Águas Subterrâneas na UGRHI-10

A qualidade das águas subterrâneas vem apresentando desconformidades de forma recorrente, notadamente nos poços localizados em Piedade, Cesário Lange, Capela do Alto e Porto Feliz. O ponto situado no município de Quadra, que também apresentou desconformidades, foi recentemente instalado.

Essa tendência deve ser mantida, ou mesmo agravada, caso medidas de controle e prevenção de cargas poluidoras (pontuais e difusas) e de proteção desses poços não sejam adotadas.

2.6 Saneamento Básico

O prognóstico relativo ao saneamento básico foi baseado nos dados extraídos dos Planos Municipais de Saneamento, elaborados pela empresa ENGECORPS, Corpo de Engenheiros Consultores S.A., contratada pela Secretaria de Saneamento e Recursos Hídricos do Estado de São Paulo (SSRH), em 2011.

No que diz respeito ao Município de Sorocaba os dados relativos ao abastecimento público e esgotamento sanitário foram extraídos dos respectivos planos elaborados por empresa de consultoria contratada pela municipalidade.

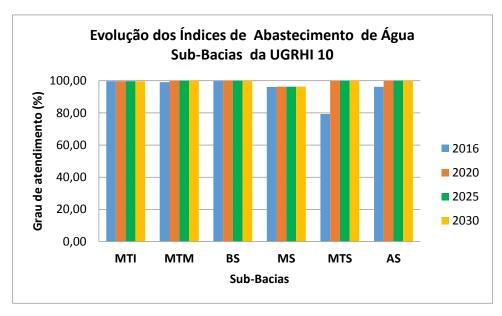
A análise desses possibilitaram a unificação das ações a serem tomadas para a melhora qualitativa e quantitativa dos recursos hídricos na UGRHI-10.

2.6.1 Abastecimento de Água Potável

As projeções relativas ao abastecimento de água potável foram extraídas dos Planos Municipais de Saneamento, elaborados pela empresa ENGECORPS, Corpo de Engenheiros Consultores S.A., contratada pela Secretaria de Saneamento e Recursos Hídricos do Estado de São Paulo (SSRH), em 2011.

Para a avaliação das demandas futuras tomou por base os coeficientes per capita apontados no **item 2.2** desse prognóstico.

a) Projeção dos Índices de Atendimento dos Sistemas de Abastecimento Público


Considerando que os Planos Municipais de Saneamento adotaram o período de 2011 a 2040 no seu planejamento, foram extraídos desse material técnico os índices de atendimento dos sistemas de abastecimento público para o período de interesse do presente prognóstico.

O **Quadro 2.6-1** mostra os índices médios de atendimento da UGRHI-10 e suas subbacias, que podem ser visualizados na **Figura 2.6-1**.

Quadro 2.6-1 Projeção dos Índices Médios de Atendimento dos Sistemas de Abastecimento Público - UGRHI-10 e Sub-Bacias

Sub-Bacias	Índ	ices Médios (%	de Atendime	ento
	2016	2020	2025	2030
SB1-MTI	99,71	99,71	99,71	99,71
SB2-MTM	99,12	100,00	100,00	100,0
SB3-BS	99,81	100,00	100,00	100,0
SB4-MS	96,17	96,32	96,32	96,32
SB5-MTS	79,33	100,00	100,00	100,0
SB6-AS	96,25	100,00	100,00	100,0
UGRHI-10	95,06	99,34	99,34	99,34

Figura 2.6-1 Evolução dos Índices Médios de Atendimento dos Sistemas de Abastecimento Público - Sub-Bacias da UGRHI 10

Dos **Quadros 2.6-2** a **2.6-7** constam as projeções dos Índices de Atendimento dos Sistemas Públicos dos Municípios agrupados por sub-bacia, bem como a previsão de demanda futura.

Quadro 2.6-2 Projeção dos Índices de Atendimento de Abastecimento Público Sub-Bacia Médio Tietê Inferior

		20	16	20	20	20	25	20	30
Sub-Bacia	Município	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)
	Anhembi	98	12,4	98	13,4	98	14,5	98	15,5
	Bofete	100	17,5	100	18,4	100	19,4	100	20,1
Médio Tietê	Botucatu	100	457,7	100	475,2	100	492,2	100	504,3
Inferior	Conchas	100	42,8	100	44,5	100	46,4	100	47,9
(SB-MTI)	Pereiras	100	14,0	100	14,7	100	15,4	100	15,8
	Porangaba	100	11,2	100	11,7	100	12,2	100	12,7
Torre de Pedra		100	4,1	100	4,3	100	4,5	100	4,7
Total SB-MTI		99,71	559,7	99,71	582,2	99,71	604,6	99,71	621,1

Quadro 2.6-3 Projeção dos Índices de Atendimento de Abastecimento Público Sub-Bacia Médio Tietê Médio

		20	16	2020		20	25	2030	
Sub-Bacia	a Município	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)
	Boituva	95,6	147,9	100	164,0	100	174,2	100	181,7
Médio Tietê	Cerquilho	100	126,9	100	134,0	100	141,7	100	147,7
Médio	Jumirim	100	5,1	100	5,7	100	6,3	100	6,9
(SB-MTM)	Porto Feliz	100	132,4	100	137,0	100	141,9	100	145,6
	Tietê	100	109,5	100	114,2	100	119,2	100	123,1
Total SB-MTM		99,12	521,7	99,71	554,9	99,71	583,3	99,71	605,1

Quadro 2.6-4 Projeção dos Índices de Atendimento de Abastecimento Público Sub-Bacia Baixo Sorocaba

		20	16	20	20	20	25	20	30
Sub-Bacia	Município	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)
	Alambari	100,0	11,2	100,0	12,3	100,0	13,6	100,0	14,7
	Capela do Alto	100,0	50,1	100,0	54,2	100,0	59,2	100,0	63,6
	Cesário Lange	100,0	34,2	100,0	35,4	100,0	36,6	100,0	37,4
Baixo	Laranjal Paulista	100,0	73,6	100,0	76,7	100,0	80,0	100,0	82,6
Sorocaba	Piedade	100,0	74,9	100,0	76,8	100,0	79,0	100,0	80,9
(SB-BS)	Quadra	100,0	2,4	100,0	2,5	100,0	2,6	100,0	2,8
	Salto de Pirapora	100,0	102,0	100,0	106,0	100,0	109,8	100,0	112,6
	Sarapuí	100,0	19,6	100,0	21,2	100,0	23,0	100,0	24,6
	Tatuí		387,0	100,0	406,6	100,0	427,5	100,0	444,3
Tota	Total SB-BS		755,15	100,0	791,74	100,0	831,45	100,0	863,38

Quadro 2.6-5 Projeção dos Índices de Atendimento de Abastecimento Público Sub-Bacia Médio Sorocaba

		20	16	20	20	20	25	20	30
Sub-Bacia	ia Município	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)
	Alumínio	77,9	34,9	77,9	35,7	77,9	36,7	77,9	37,5
	Araçoiaba da Serra	100	63,6	100,0	67,8	100,0	72,7	100,0	76,4
Médio Sorocaba	Iperó	100	60,3	100,0	64,5	100,0	68,8	100,0	72,2
(SB-MS)	Mairinque	100	110,3	100,0	113,2	100,0	116,2	100,0	118,3
(==,	Sorocaba	99,1	2527,0	100,0	2663,2	100,0	2769,9	100,0	2837,2
	Votorantim	100	387,0	100,0	401,5	100,0	415,8	100,0	426,5
Tot	Total SB-MS		3183,0	96,32	3345,9	96,32	3480,1	96,32	3568,2

Quadro 2.6-6 Projeção dos Índices de Atendimento de Abastecimento Público Sub-Bacia Médio Tietê Superior

		20	2016		2020		25	2030	
Sub-Bacia	Município	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)
Médio	Araçariguama	57,9	34,4	100,0	63,9	77,9	68,7	77,9	72,6
Tietê	Cabreúva	87,9	108,9	100,0	134,8	100,0	147,2	100,0	157,8
Superior	Itu	99,1	534,6	100,0	562,4	100,0	585,6	100,0	602,3
(SB-MTS)	São Roque	72,4	176,7	100,0	257,4	100,0	269,3	100,0	276,5
Tota	al SB-MTS	79,3	854,5	96,32	1018,5	96,32	1070,9	96,32	1109,2

Quadro 2.6-7 Projeção dos Índices de Atendimento de Abastecimento Público Sub-Bacia Alto Sorocaba

Sub-Bacia M		2016		2020		2025		2030	
	Município	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)	Índice (%)	Dem. (L/s)
Alto	Ibiúna	100,0	81,8	100,0	85,8	100,0	90,6	100,0	94,9
Sorocaba (SB-AS)	Vargem Grande Paulista	92,5	137,7	100,0	160,6	100,0	174,0	100,0	185,8
Total SB-AS		86,25	219,5	100,0	246,4	100,0	264,6	100,0	280,7

2.6.2 Esgotamento Sanitário

De forma a subsidiar o entendimento da situação do esgotamento sanitário na UGRI 10 são apresentados os dados publicados pela Cetesb relativos ao ano de 2016, ano base do prognóstico.

Em seguida são apresentadas as projeções de coleta e tratamento de esgotos gerados pela população urbana dos municípios que integram a UGRHI 10, sistematizados por sub-bacias.

2.6.2.1 Situação no ano base.

Considerando que o prognóstico tem 2016 como ano base, foram atualizados os dados relativos ao esgotamento sanitário para esse ano. Esses dados constam do Apêndice C – Saneamento Básico dos Municípios Paulistas, do Relatório de Qualidade das Águas Interiores no Estado de São Paulo-2016 (Cetesb, 2017).

De forma a permitir uma melhor visualização esses dados foram agregados de acordo com as sub-bacias que integram a UGRHI 10 e são apresentados nos quadros a seguir.

A eficácia do sistema de esgotamento sanitário é consolidada através do ICTEM - Indicador de Coleta e Tratabilidade de Esgoto da População Urbana do Município. Esse indicador expressa a efetiva remoção da carga orgânica poluidora em relação à carga orgânica poluidora potencial, gerada pela população urbana, considerando também a importância relativa dos elementos formadores de um sistema de tratamento de esgotos (coleta, afastamento, tratamento e eficiência de tratamento e a qualidade do corpo receptor dos efluentes)

O **Quadro 2.6-8** aponta os valores de referência do ICTEM e sua respectiva classificação.

Quadro 2.6-8 Classificação do ICTEM

ICTEM	Classificação
0 < ICTEM ≤ 2,5	Péssimo
2,5 < ICTEM ≤ 5,0	Ruim
5,0 < ICTEM ≤ 7,5	Regular
7,5 < ICTEM ≤ 10	Bom

Fonte: CETESB, 2017

a) Sub-Bacia Médio Tietê Inferior

O município de Botucatu, que possui a maior população urbana da sub bacia, e responsável por cerca de 70% da carga remanescente, é o que apresenta o melhor desempenho conforme revela o valor do ICTEM calculado pela Cetesb.

Em contrapartida, os municípios com menores populações urbanas (Anhembi, Porangaba e Torre de Pedra) são os que apresentaram o pior desempenho. No **Quadro 2.6-9** e na **Figura 2.6-2**, a seguir, é possível visualizar essa situação.

Quadro 2.6-9 – Coleta e Tratamento de Esgotos – Sub Bacia Médio Tietê Inferior

Sub- Bacia	Município	Concessão	População Urbana	Grau ate	Grau atendimento (%)		Carga (kg	ICTEM	
Dacia			(hab)	Coleta	Tratamento		Potencial	Remanescente	
	Anhembi	SABESP	4.828	89	83	84	261	98	7,14
	Bofete	SABESP	7.293	87	100	86	394	98	7,99
Médio	Botucatu	SABESP	135.881	93	100	86	7.338	1.469	9,90
Tietê	Conchas	SABESP	14.192	81	100	89	766	215	7,88
Inferior	Pereiras	SAMASPE	5.544	100	100	67	299	99	7,66
	Porangaba	SABESP	4.560	72	100	73	246	116	6,22
	Torre de Pedra	SABESP	1.555	76	100	78	84	34	6,80
	Total SB-MTI		173.853				9.388	2.129	

Figura 2.6-2 – Esgotamento Sanitário: Sub-Bacia Médio Tietê Inferior

b) Sub Bacia Médio Tietê Médio

Os municípios de Cerquilho e Porto Feliz apresentaram melhor desempenho conforme revelam os valores do ICTEM calculados pela CETESB.

Atenção especial deve ser dada aos municípios de Boituva e Tietê considerando os baixos valores do ICTEM.

É possível visualizar essa situação no **Quadro 2.6-10** e na **Figura 2.6-3**, a seguir.

Quadro 2.6-10 - Coleta e Tratamento de Esgotos: Sub Bacia Médio Tietê Médio

Sub- Bacia	Minicípio	Concessão	População Urbana	Grau a	Grau atendimento (%)		Carga Poluidora kg DBO/dia)		ICTEM
Dacid			(hab)	Coleta	Tratamento		Potencial	Remanescente	
	Boituva	SABESP	53.459	69	100	70	2.887	1.490	5,89
Médio	Cerquilho	SAAEC	43.571	98	100	84	2.353	416	9,67
Tietê	Jumirim	PM	1.855	95	100	68	100	35	7,32
Médio	Porto Feliz	SAEE	43.890	99	100	85	2.370	370	9,99
	Tietê	SAMAE	36.911	97	38	88	1.993	1.354	4,61
	Total SB-MTM		179.686				9.703	3.665	

Coleta e Tratamento dos Esgotos Sanitários Sub-Bacia Médio Tietê Médio 120 100 80 60 40 20 Boituva Tietê Cerquilho Jumirim Porto Feliz Coleta Tratamento -ICTEM

Figura 2.6-4 Esgotamento Sanitário - Sub-Bacia Médio Tietê Médio

c) Sub Bacia Baixo Sorocaba

Na sub-bacia do Baixo Sorocaba os municípios de Laranjal Paulista e Salto de Pirapora apresentaram os maiores valores de ICTEM.

O município de Tatuí, que tem um ICTEM classificado como regular, é responsável por cerca de 50% da carga remanescente de DBO lançado nos corpos de água.

Merece destacar o município de Sarapuí que apresenta um ICTEM classificado como péssimo.

Quadro 2.6-11 Coleta e Tratamento de Esgotos - Sub-Bacia Baixo Sorocaba

Sub- Bacia	Município	Concessão	População Urbana	Grau atendimento (%)		Eficiência	Carga Poluidora (kg DBO/dia)		ICTEM
Bacia			(hab)	Coleta	Tratamento		Potencial	Remanescente	
	Alambari	SABESP	4.252	58	100	94	230	105	5,90
	Capela do Alto	SABESP	16.357	85	100	94	883	340	6,98
	Cesário Lange	SABESP	11.731	95	100	43	633	378	5,73
Daine	Laranjal Paulista	SABESP	24.745	91	100	90	1.336	249	9,66
Baixo Sorocaba	Piedade	SABESP	25.009	63	96	90	1.350	613	6,44
Sorocaba	Quadra	SABESP	930	68	100	88	50	20	6,58
	Salto de Pirapora	SABESP	34.480	90	100	93	1.862	301	9,65
	Sarapuí	SABESP	7.315	56	0	0	395	395	0,85
	Tatuí	SABESP	111.801	88	85	84	6.037	2.275	7,14
	Total SB-BS		236.620				12.776	4.676	

Coleta e Tratamento dos Esgotos Sanitários **Sub-Bacia Baixo Sorocaba** 120 100 80 60 40 20 0 Alambari Capela Cesário Laranjal Piedade Quadra Salto de Sarapuí Tatuí do Alto Paulista Pirapora Lange Coleta Tratamento ——ICTEM

Figura 2.6-5 – Esgotamento Sanitário - Sub-Bacia Baixo Sorocaba

d) Sub-bacia do Médio Sorocaba

O município de Sorocaba é responsável pela maior carga remanescente no Médio Sorocaba, apesar de possuir o melhor ICTEM. A situação atual nesta sub-bacia pode ser consultada no **Quadro 2.6-12** e **Figura 2.6-6**.

Quadro 2.6-12 Coleta e Tratamento de Esgotos - Sub-Bacia Médio Sorocaba

Sub- Bacia	Município	Concessão	População Urbana	Grau atendimento (%)		Eficiência	Carga Poluidora (kg DBO/dia)		ICTEM
Dacia			(hab)	Coleta	Tratamento		Potencial	Remanescente	
	Alumínio	SABESP	15.262	68	0	0	824	824	1,02
	Araçoiaba da Serra	Águas de Araçoiaba	21.968	41	100	80	1.186	799	4,24
Médio	Iperó	SEAMA	21.080	70	100	70	1.138	581	6,24
Sorocaba	Mairinque	SANEAGUA	37.166	75	0	0	2.007	2.007	1,13
	Sorocaba	SAAE	645.836	98	92	90	34.875	6.559	9,85
	Votorantim	Águas de Votorantim	114.302	98	98	82	6.172	1.328	8,54
	Total SB-MS						46.202	12.098	

Coleta e Tratamento de Esgotos Sanitários Sub-Bacia Médio Sorocaba 120 100 80 60 40 20 1,02 0 Votorantim Alumínio Araçoiaba da Mairinque Sorocaba Iperó Serra Coleta Tratamento ——ICTEM

Figura 2.6-6 Coleta e Tratamento de Esgotos - Sub-Bacia Médio Sorocaba

e) Sub-Bacia do Médio Tietê Superior

Nesta sub-bacia os municípios de Araçariguama e São Roque apresentam valores de ICTEM enquadrados da categoria péssimo e mercem atenção especial.

Quadro 2.6-13 Coleta e Tratamento de Esgotos - Sub Bacia Médio Tietê Superior

Sub-Bacia	Município Concessã		População Urbana	Grau atendimento (%)		Eficiência	Carga Poluidora (kg DBO/dia)		ICTEM
			(hab)	Coleta	Tratamento		Potencial	Remanescente	
	Araçariguama	SABESP	13.593	38	0	0	734	734	0,57
Médio	Cabreúva	SABESP	40.013	67	100	95	2.161	785	6,85
Tietê	Itu	Águas de Itu	157.855	98	74	95	8.524	2.652	7.56
Superior	Salto	SANESALTO	114.383	92	96	89	6.177	1.33	8,41
	São Roque	SABESP	79.366	44	0	0	4.286	4.286	0,66
	Total SB-MTS		405.210				21.882	8.457	

Coleta e Tratamento de Esgotos Sanitários
Sub-Bacia Médio Tietê Superior

120

100

80

40

0,66

São Roque

Figura 2.6-7 Coleta e Tratamento de Esgotos – Sub-Bacia Médio Tietê Superior

f) Sub-bacia do Alto Sorocaba

0,57 Araçariguama

Cabreúva

Coleta

20

Quadro 2.6-14 Coleta e Tratamento de Esgotos - Sub-Bacia Alto Sorocaba

ltu

Tratamento

Salto

——ICTEM

Sub- Bacia	Município Concessão		População Urbana	Grau atendimento (%)		Eficiência	Carga Poluidora (kg DBO/dia)		ICTEM
Dacia			(hab)	Coleta	Tratamento		Potencial	Remanescente	
Alto	Ibiúna	SABESP	26.974	40	100	90	1.457	933	4,94
Sorocaba	Vargem Grande Paulista	SABESP	49.542	29	28	80	2.675	2.501	1,48
	Total SB-AS		76.516				4.132	3.434	

Coleta e Tratamento de Esgotos Sanitários
Sub-Bacia Alto Sorocaba

120
100
80
60
40
20
0 Ibiúna Vargem G. Paulista
Coleta Tratamento ICTEM

Figura 2.6-8 Coleta e Tratamento de Esgotos - Sub-Bacia Alto Sorocaba

g) Conclusão

Em geral, o cenário refrente ao esgotamento sanitário na UGRHI10 ainda é preocupante, já que é a quarta UGRHI mais populosa do Estado de São Paulo. Considerando que 13.6% da sua população ainda não recebe o serviço de coleta de esgoto, são 270.000 habitantes sem este serviço básico. seu Deve-se ressaltar que a atual eficiência do sistema de esgotamento ainda não trata 35,4% do efluente doméstico coletado. Ao combinar esses dois parâmetros observa-se que ainda 44% do esgoto gerado na UGRHI 10 é lançado diretamente nos corpos d'água.

Os municípios em situação mais crítica (<50%) referente a coleta de esgoto são: Alambari (BS), Araçariguama (MTS), Araçoiaba da Serra (MS), Ibiúna (AS), Piedade (MS), Porangaba (BS), São Roque (MTS), Sarapuí(BS), Quadra(BS), Vargem Grande Paulista (AS). Juntos representam 33,3% dos municípios da UGRHI10.

A porcentagem do esgoto coletado é superior a 89% nos municípios com maior concentração populacional como, Sorocaba, Itu, Botucatu, Tatuí e Votorantim.

Utilizando o ICTEM para avaliar as condições gerais do sistema de tratamento de esgoto municipal, observa-se que as sub-bacias do Alto Sorocaba e Médio Tiete Superior, são as áreas mais críticas da UGRHI 10. Cabe ressaltar que no Alto Sorocaba está localizado o Reservatório de Itupararanga, responsável por abastecer mais de 500.000 habitantes. Foram 8 municípios (24% do total) com ICTEM abaixo da nota 5,0: Araçariguama(MTS), São Roque (MTS), Mairinque (MS), Vargem Grande Paulista (AS), Ibiúna (AS), Sarapuí (BS), Araçoiaba da Serra (MS) e Tietê (MTM).

2.6.2.2 Projeção dos Índices de Coleta de Esgotos

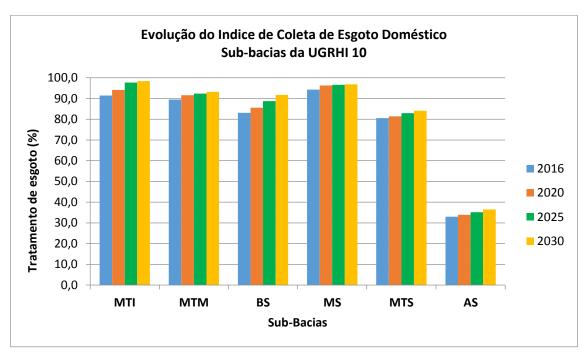
Para a projeção dos Índices de Coleta de Esgotos foram utilizados os dados da UGRHI 10 entre os anos de 2011 e 2016, obtidos dos relatórios de situação. O cálculo foi realizado por meio de aplicação de função linear no período proposto.

Após a obtenção da taxa, o valor foi aplicado para todo os municípios a partir do ano de 2017, até o ano de projeção de 2030.

Os resultados foram comparados com os valores de referência adotados pelo SNIS e adaptados pelo CRHi ((Quadro 2.6-15).

Quadro 2.6-15 Classificação do Índice de Coleta de Efluente Doméstico

Índice de Atendimento com Rede de Esgoto	Classificação		
Dados não fornecidos/sem informação	Sem dados		
< 50%	Ruim		
≥ 50% e < 90%	Regular		
≥ 90%	Bom		

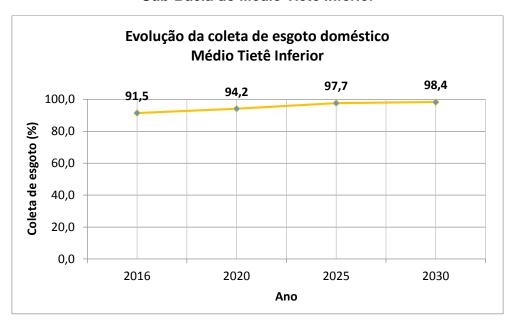

Fonte: CRH,2017

O **Quadro 2.6-16** mostra os índices de coleta de esgotos domésticos UGRHI-10 e suas sub-bacias, que podem ser visualizados na **Figura 2.6-9**.

Quadro 2.6-16 Projeção dos Índices de Coleta de Esgotos Domésticos UGRHI-10 e Sub-Bacias

Sub-Bacias	Índices Coleta de Esgotos Domésticos (%)							
	2016	2020	2025	2030				
SB1-MTI	91,5	94,2	97,7	98,4				
SB2-MTM	89,5	91,6	92,3	93,2				
SB3-BS	83,1	85,5	88,7	91,8				
SB4-MS	94,3	96,3	96,6	96,8				
SB5-MTS	80,5	81,4	82,9	84,1				
SB6-AS	33,0	33,9	35,2	36,5				
UGRHI-10	78,6	80,5	82,2	83,4				

Figura 2.6-9 Evolução dos Índices de Coleta de Esgotos Domésticos Sub-Bacias da UGRHI-10


Os Quadros **2.6-17** a **2.6-22** contêm as projeções dos índices de Coleta de Esgoto Doméstico, calculadas com base na metodologia adotada, para os municípios que integram a UGRHI-10 agrupados por sub-bacia.

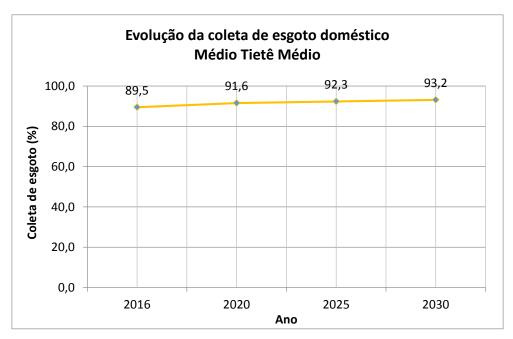
A evolução destes índices, por sub-bacia, é apresentada nas Figuras 2.6-10 a 2.6-15.

Quadro 2.6-17 – Projeção dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Médio Tietê Inferior

Sub- Bacia	Município	Concessão	Coleta de esgoto doméstico (%)					
Baola			2016	2020	2025	2030		
	Anhembi	SABESP	89,4	92,1	95,7	99,4		
	Bofete	SABESP	87,5	90,2	93,7	97,3		
Médio	Botucatu	SABESP	93,3	96,2	99,9	100,0		
Tietê	Conchas	SABESP	80,8	83,3	86,5	89,9		
Inferior	Pereiras	SAMASPE	100,0	100,0	100,0	100,0		
	Porangaba	SABESP	72,3	74,6	77,5	80,5		
	Torre de Pedra	SABESP	76,1	78,5	81,5	84,7		
	Total SB-MT		91,5	94,2	97,7	98,4		

Figura 2.6-10 Evolução dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Médio Tietê Inferior

No Médio Tietê Inferior os municípios de Botucatu e Pereiras apresentam índices de coleta que podem ser classificados como bons ao longo do período analisado. Anhembi e Bofete devem atingir essa classificação a partir de 2020.


Por sua vez, Conchas, Porangada e Torre de Pedra se enquadram na classificação regular no período 2016-2030.

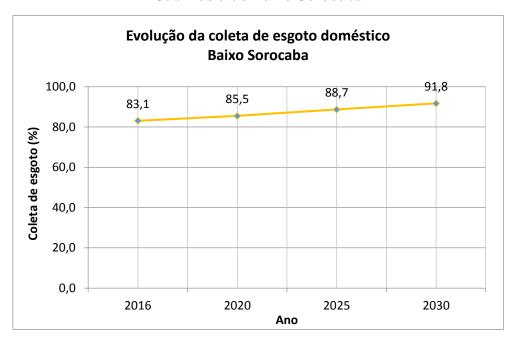
Para o total da sub-bacia a classificação é boa, influenciada por Botucatu que possui o maior contingente populacional do Médio Tietê Inferior e apresenta elevado índice de coleta.

Quadro 2.6-18 Projeção dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Médio Tietê Médio

Sub- Bacia	Município	Concessão	Coleta de esgoto doméstico (%)				
Buolu			2016	2020	2025	2030	
	Boituva	SABESP	69,4	71,5	74,3	77,2	
Médio	Cerquilho	SAAEC	98,0	100,0	100,0	100,0	
Tietê	Jumirim	PM	95,0	97,9	100,0	100,0	
Médio	Porto Feliz	SAEE	99,0	100,0	100,0	100,0	
	Tietê	SAMAE	97,0	100,0	100,0	100,0	
	Total SB-MTM		89,5	91,6	92,3	93,2	

Figura 2.6-11 Evolução dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Médio Tietê Médio

Com exceção do município de Boituva, todos os demais apresentam índices de coleta de esgoto doméstico classificados como bons.

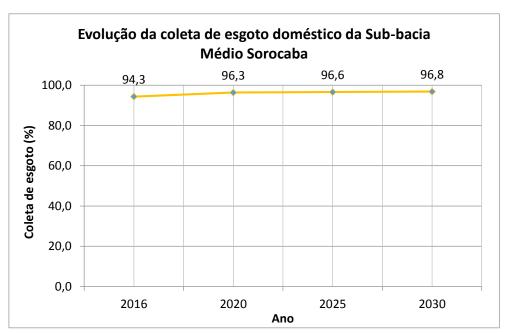

Boituva tem um índice de coleta de esgoto classificado como regular, situação que necessita ser regularizada.

A evolução dos índices de coleta no Médio Tietê Médio apontam para uma boa classificação, influenciado pelos elevados índices na grande maioria dos municípios desta sub-bacia.

Quadro 2.6-19 Projeção dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Baixo Sorocaba

Sub-Bacia	Minicípio	Concessão	Coleta de esgoto doméstico (%)					
			2016	2020	2025	2030		
	Alambari	SABESP	57,8	59,6	61,9	64,3		
	Capela do Alto	SABESP	65,4	67,4	70,1	72,8		
	Cesário Lange	SABESP	94,5	97,4	100,0	100,0		
Delas	Laranjal Paulista	SABESP	90,6	93,4	97,1	100,0		
Baixo Sorocaba	Piedade	SABESP	63,5	65,5	68,0	70,6		
Oorooaba	Quadra	SABESP	67,6	69,7	72,4	75,2		
	Salto de Pirapora	SABESP	90,1	92,9	96,5	100,0		
	Sarapuí	SABESP	56,5	58,2	60,5	62,9		
	Tatuí	SABESP	87,9	90,6	94,1	97,8		
	Total SB-BS		83,1	85,5	88,7	91,8		

Figura 2.6-12 Evolução dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Baixo Sorocaba


No Baixo Sorocaba os índices de coleta de esgotos domésticos apresentam valores bem variados. Em Cesário Lange, Laranjal Paulista e Salto de Pirapora os índices podem ser classificados como bons ao longo de todo o período analisado, enquanto que Tatuí atinge essa classificação a partir de 2020.

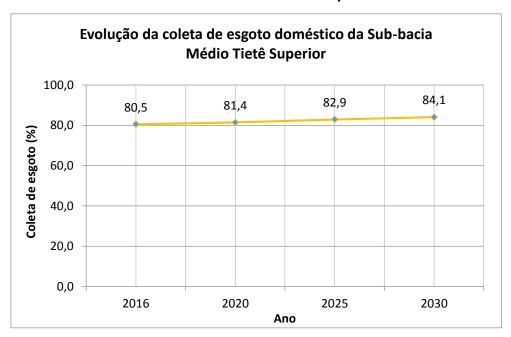
Os demais municípios possuem índices que podem ser classificados na categoria de regular. Como consequência, esses índices deverão atingir uma condição satisfatória por volta do ano 2027, conforme pode ser observado pela evolução dos índices de coleta nesta sub-bacia.

Quadro 2.6-20 Projeção dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Médio Sorocaba

Sub- Bacia	Município	Concessão	Coleta de esgoto doméstico (%)				
Buolu			2016	2020	2025	2030	
	Alumínio	SABESP	68,0	70,1	72,8	75,7	
	Araçoiaba da Serra	Águas de Araçoiaba	40,8	42,1	43,7	45,4	
Médio	Iperó	SEAMA	70,0	72,2	75,0	77,9	
Sorocaba	Mairinque	SANEAGUA	75,0	77,3	80,3	83,4	
	Sorocaba	SAAE	98,0	100,0	100,0	100,0	
	Votorantim	otorantim Águas de Votorantim		100,0	100,0	100,0	
	Total SB-MS	94,3	96,3	96,6	96,8		

Figura 2.6-13 Evolução dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Médio Sorocaba

Os municípios com maiores contingentes populacionais na área urbana, Sorocaba e Votorantim, apresentam elevados índices de coleta de esgoto doméstico.


Os municípios de Alumínio, Iperó e Mairinque apresentam índices de coleta que podem ser classificados na condição regular, enquanto que em Araçoiaba da Serra o índice de coleta é ruim, ao longo do período analisado.

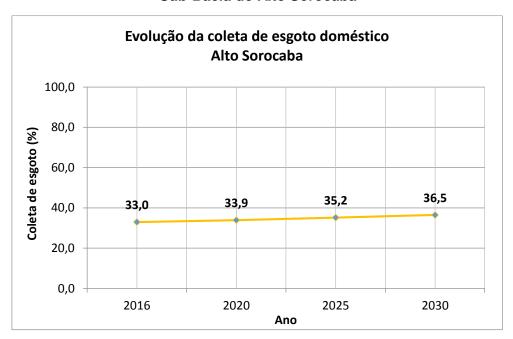
A evolução dos índices de coleta no Médio Sorocaba mostram-se elevados, influenciados pelos municípios de Sorocaba e Votorantim.

Quadro 2.6-21 Evolução dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Médio Tietê Superior

Sub- Bacia	Município	Concessão	Coleta de esgoto doméstico (%)					
Dacia			2016	2020	2025	2030		
	Araçariguama	SABESP	37,9	39,1	40,6	42,2		
Médio	Cabreúva	SABESP	67,3	69,4	72,1	74,9		
Tietê	Itu	Águas de Itu	98,0	100,0	100,0	100,0		
Superior	Salto	SANESALTO	91,6	94,4	98,1	100,0		
	São Roque	SABESP	43,8	45,2	47,0	48,8		
	Total SB-MT	80,5	81,4	82,9	84,1			

Figura 2.6-14 Evolução dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Médio Tietê Superior

No Médio Tietê Inferior os municípios de Araçariguama e São Roque possuem baixos índices de coleta de esgoto doméstico, permitindo enquadrá-los na condição ruim ao longo do período estudado.


Em contrapartida, Itu e Salto apresentam bons índices de coleta. Observe-se que a área urbana de Salto encontra-se inserida na UGRHI 05 (Piracicaba/Capivari/Jundiaí) e os esgotos domésticos são lançados no rio Tietê no trecho que corta a UGRHI-10.

Observando-se a evolução desses índices no Médio Tietê Superior verifica-se que deverá ser mantida a tendência de classificação na categoria regular.

Quadro 2.6-22 Projeção dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Alto Sorocaba

Sub-Bacia	Município	Concessão	Coleta de esgoto doméstico (%)					
			2016	2020	2025	2030		
Alto	Ibiúna	SABESP	40,0	41,2	42,8	44,4		
Sorocaba Vargem Grande Paulista		SABESP	29,2	30,1	31,2	32,4		
	SB-AS		33,0	33,9	35,2	36,5		

Figura 2.6-15 Evolução dos índices de Coleta de Esgoto Doméstico Sub-Bacia do Alto Sorocaba

Essa sub-bacia apresenta a situação mais precária no que diz respeito aos índices de coleta de esgotos domésticos. Nos dois municípios que a integram esses índices podem ser classificados na categoria ruim.

2.6.3 Manejo de Resíduos Sólidos

Neste item são apresentadas e discutidas as questões relativas ao manejo de resíduos sólidos considerando as sub-bacias.

É importante observar que todas as instalações utilizadas para disposição final dos resíduos sólidos urbanos gerados nos municípios da UGRHI 10, desde 2013, foram enquadradas na condição adequada, uma vez que os Índices de Qualidade de Aterros de Resíduos (IQR) apurados pela CETESB estiveram na faixa de 7,1 a 10,0.

2.6.3.1 Projeção da Geração de Resíduos Sólidos

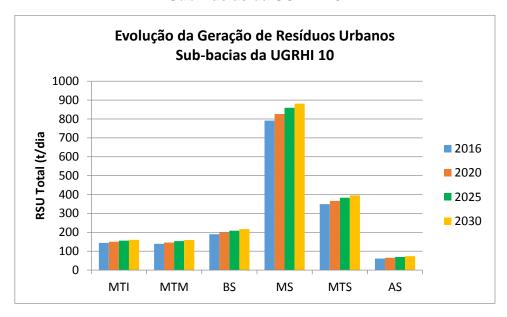
As projeções da geração de resíduos sólidos da população urbana foram efetuadas tomando por base os Índices estimativos de produção per capita propostos pela CETESB (Quadro 2.6-23)

Quadro 2.6-23 Índices Estimativos de Produção "per capita" de Resíduos Sólidos Urbanos

População (hab)	Produção (Kg/hab.dia)
Até 25.000	0,7
De 25.001 a 100.000	0,8
De 100.001 a 500.000	0,9
Maior que 500.000	1,1

Fonte: CETESB, 2017b

Esses índices, de acordo com a CETESB (2017b), consideram os resíduos domiciliares (oriundos de atividades domésticas em residências urbanas), os resíduos de limpeza urbana (varrição, limpeza de logradouros e vias públicas) e os resíduos provenientes de estabelecimentos comerciais e prestadores de serviços (executando-se aqueles gerados por grandes geradores).

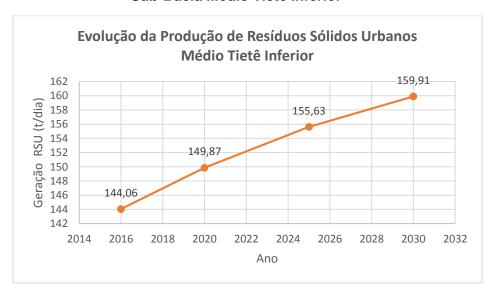

Com base nesses índices e as projeções da população urbana disponibilizados pelo SEADE foi realizada a projeção de geração dos resíduos sólidos urbanos nas subbacias que integram a UGRHI 10.

O **Quadro 2.6-24** apresenta a projeção da geração de resíduos sólidos urbanos UGRHI-10 e suas sub-bacias, que podem ser visualizados na **Figura 2.6-16**.

Quadro 2.6-24 Projeção da Geração de Resíduos Sólidos Urbanos UGRHI-10 e Sub-Bacias

Sub-Bacias	Geraçã		os Sólidos U %)	rbanos
	2016	2020	2025	2030
SB1-MTI	144,06	149,87	155,63	159,91
SB2-MTM	138,92	145,88	153,35	159,06
SB3-BS	189,28	198,49	208,46	216,48
SB4-MS	791,87	791,87 826,29		880,96
SB5-MTS	349,33	366,15	382,91	395,15
SB6-AS	60,62 64,77		69,54	73,77
UGRHI-10	1674,08	1751,45	1829,17	1885,33

Figura 2.6-16 Evolução da Geração de Resíduos Sólidos Urbanos Sub-Bacias da UGRHI-10


a) Sub-bacia Médio Tietê Inferior (SB-MTI)

O município de Botucatu é responsável por cerca de 80% dos resíduos sólidos urbanos gerados nessa sub-bacia. No **Quadro 2.6-25** consta a projeção da produção dos resíduos sólidos na SB-MTI, que ser visualizada na **Figura 2.6-17**.

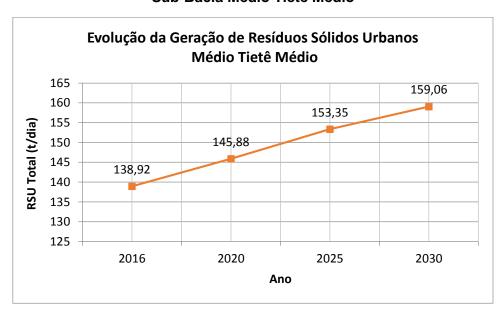
Quadro 2.6-25 Projeção da Geração de Resíduos Sólidos Urbanos Sub-Bacia Médio Tietê Inferior

		20:	16	202	2020		2025		30
Sub- Bacia	Município	População Urbana (hab)	Geração de RSU (t/dia)						
	Anhembi	4.860	3,40	5.256	3,68	5.698	3,99	6.079	4,26
	Bofete	6.702	4,69	7.062	4,94	7.447	5,21	7.728	5,41
Médio	Botucatu	131.367	118,23	136.396	122,76	141.280	127,15	144.763	130,29
Tietê Inferior	Conchas	14.069	9,85	14.628	10,24	15.244	10,67	15.751	11,03
illierioi	Pereiras	5.380	3,77	5.628	3,94	5.897	4,13	6.071	4,25
	Porangaba	4.316	3,02	4.495	3,15	4.667	3,27	4.870	3,41
	Torre de Pedra	1.579	1,10	1.651	1,16	1.733	1,21	1.803	1,26
Tot	tal SB-MTI	168.273	144,06	175.116	149,87	181.966	155,63	187.065	159,91

Figura 2.6-17 Evolução da Geração de Resíduos Sólidos Urbanos Sub-Bacia Médio Tietê Inferior

A partir dessa projeção observa-se um acréscimo na geração de resíduos sólidos urbanos de 4,03% no período de 2016 a 2020; de 3,84% no período de 2020 a 2025; e, de 2,75% no período de 2025 a 2030.

b) Sub Bacia Médio Tietê Médio (SB-MTM)

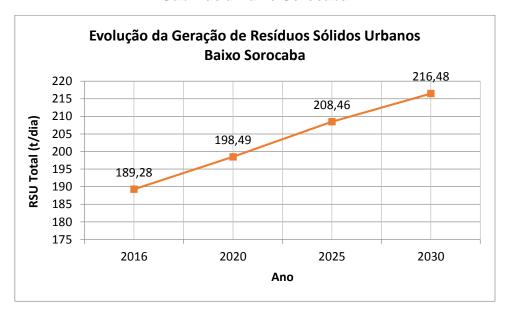

A projeção da produção dos resíduos sólidos na SB-MTM consta do **Quadro 2.6-25** e pode ser visualizada na **Figura 2.6-17.**

A partir dessa projeção observa-se um acréscimo na geração de resíduos sólidos urbanos de 5,05% no período de 2016 a 2020; de 4,89% no período de 2020 a 2025; e, de 3,9% no período de 2025 a 2030.

Quadro 2.6-25 Projeção da Geração de Resíduos Sólidos Urbanos Sub-Bacia Médio Tietê Médio

		2016		202	20	20:	2025		30
Sub-Bacia	Município	População Urbana (hab)	Geração de RSU (t/dia)						
	Boituva	50.813	40,65	53.893	43,11	57.240	45,79	59.676	47,74
Médio	Cerquilho	41.675	33,34	44.009	35,28	46.535	37,23	48.538	38,83
Tietê	Jumirim	1.958	1,37	2.175	1,52	2.423	1,70	2.649	1,85
Médio	Porto Feliz	43.490	34,79	45.016	36,01	46.628	37,03	47.840	38,27
	Tietê	35.958	28,77	37.528	30,02	39.162	31,33	40.456	32,36
Total SB-MTM		173.894	138,92	182.621	145,94	191.988	153,08	199.159	159,05

Figura 2.6-17 Evolução da Geração de Resíduos Sólidos Urbanos Sub-Bacia Médio Tietê Médio

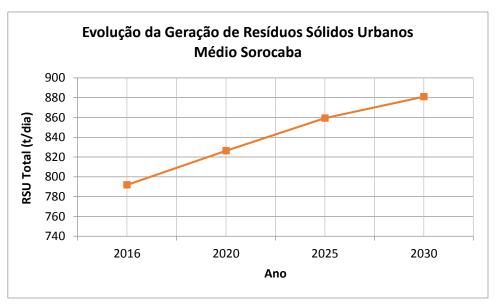

c) Sub Bacia Baixo Sorocaba

A projeção da produção dos resíduos sólidos na SB-BS consta do **Quadro 2.6-26** e pode ser visualizada na **Figura 2.6-18**.

Quadro 2.6-26 Projeção da Geração de Resíduos Sólidos Urbanos Sub-Bacia Baixo Sorocaba

		20:	16	202	20	20:	25	203	30
Sub-Bacia	Município	População	Geração	População	Geração	População	Geração	População	Geração
		Urbana	de RSU						
		(hab)	(t/dia)	(hab)	(t/dia)	(hab)	(t/dia)	(hab)	(t/dia)
	Alambari	4.307	3,01	4.729	3,31	5.224	3,66	5.645	3,95
	Capela do Alto	16.462	11,52	17.817	12,47	19.447	13,61	20.892	14,62
	Cesário Lange	11.248	7,87	11.645	8,15	12.027	8,42	12.299	8,61
Paiva	Laranjal Paulista	24.193	16,94	25.207	17,64	26.297	18,41	27.141	19,00
Baixo Sorocaba	Piedade	24.617	17,23	25.239	17,67	25.952	18,17	26.561	18,59
Sorocaba	Quadra	909	0,64	960	0,67	1.014	0,71	1.060	0,74
	Salto de Pirapora	33.523	26,82	34.810	27,85	36.076	28,86	36.995	29,60
	Sarapuí	7.535	5,27	8.130	5,69	8.827	6,18	9.428	6,60
	Tatuí	111.079	99,97	116.699	105,03	122.725	110,45	127.519	114,77
To	otal SB-BS	233.873	189,28	245.236	198,49	257.589	208,46	267.540	216,48

Figura 2.6-18 Evolução da Geração de Resíduos Sólidos Urbanos Sub-Bacia Baixo Sorocaba

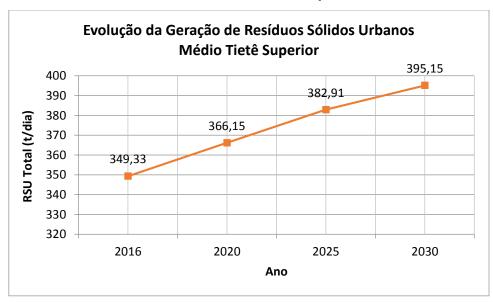

d) Sub-Bacia Médio Sorocaba

A projeção da produção dos resíduos sólidos na SB-MS consta do **Quadro 2.6-27** e pode ser visualizada na **Figura 2.6-19**.

Quadro 2.6-27 Projeção da Geração de Resíduos Sólidos Urbanos Sub-Bacia Médio Sorocaba

		201	.6	20:	20	2025		2030	
Sub-Bacia	Município	População Urbana (hab)	Geração de RSU (t/dia)						
	Alumínio	14.698	10,29	15.073	10,55	15.483	10,84	15.832	11,08
	Araçoiaba Serra	20.887	14,62	22.263	15,58	23.873	16,71	25.110	17,58
Médio	Iperó	19.794	13,86	21.197	14,84	22.615	15,83	23.711	16,60
Sorocaba	Mairinque	36.236	28,99	37.178	29,74	38.177	30,54	38.869	31,10
	Sorocaba	624.133	624,13	651.845	651,85	677.952	677,95	694.431	694,43
	Votorantim	111.090	99,98	115.254	103,73	119.343	107,41	122.417	110,18
То	tal SB-MS	826.838	791,87	862.810	826,29	897.443	859,28	920.370	880,96

Figura 2.6-19 Evolução da Geração de Resíduos Sólidos Urbanos Sub-Bacia Médio Sorocaba

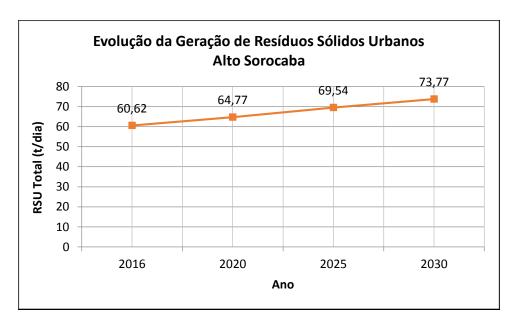

e) Sub-Bacia Médio Tietê Superior

A projeção da produção dos resíduos sólidos na SB-MTS consta do **Quadro 2.6-28** e pode ser visualizada na **Figura 2.6-20**.

Quadro 2.6-28 Projeção da Geração de Resíduos Sólidos Urbanos Sub-Bacia Médio Tietê Superior

		201	2016		2020		2025		30
Sub-Bacia	Município	População Urbana (hab)	Geração de RSU (t/dia)						
	Araçariguama	19.493	13,65	20.980	14,69	22.573	15,80	23.850	16,70
Médio	Cabreúva	40.695	32,56	44.288	35,43	48.372	38,70	51.849	41,48
Tietê	Itu	154.843	139,36	161.437	145,29	168.094	151,28	172.872	155,58
Superior	Salto	110.708	99,64	114.561	103,10	118.163	106,35	120.804	108,72
	São Roque	80.172	64,14	84.550	67,64	88.481	70,78	90.836	72,67
Tot	tal SB-MTS	405.911	349,33	425.816	366,15	445.683	382,91	460.211	395,15

Figura 2.6-20 Evolução da Geração de Resíduos Sólidos Urbanos Sub-Bacia Médio Tietê Superior


f) Sub-Bacia Alto Sorocaba

A projeção da produção dos resíduos sólidos na SB-MTS consta do **Quadro 2.6-29** e pode ser visualizada na **Figura 2.6-21**.

Quadro 2.6-29 Projeção da Geração de Resíduos Sólidos Urbanos Sub-Bacia Alto Sorocaba

Sub-Bacia	Município	201	.6	202	2020		25	2030	
		População	Geração	População	Geração	População	Geração	População	Geração
Sub Buciu		Urbana	de RSU						
		(hab)	(t/dia)	(hab)	(t/dia)	(hab)	(t/dia)	(hab)	(t/dia)
Alto	Ibiúna	26.872	21,50	28.199	22,56	29.768	23,81	31.164	24,93
Sorocaba	Vargem Gde Pta	48.905	39,12	52.762	42,21	57.156	45,72	61.050	48,84
To	tal SB-AS	75.777	60,62	80.961	64,77	86.924	69,54	92.214	73,77

Figura 2.6-21 Evolução da Geração de Resíduos Sólidos Urbanos Sub-Bacia Alto Sorocaba

Referências

São Paulo. CETESB. **Qualidade das águas interiores no estado de São Paulo** 2016 [recurso eletrônico]. São Paulo: CETESB, 2017a. Disponível em: http://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2013/11/Cetesb_QualidadeAguasInteriores_2017_02-06_VF.pdf. Acesso em: out. 2017.

São Paulo. CETESB. **Inventário Estadual de Resíduos Sólidos Urbanos 2016** [recurso eletrônico]. São Paulo: CETESB, 2017b. Disponível em: http://solo.cetesb.sp.gov.br/wp-content/uploads/sites/18/2013/12/inventario-residuos-solidos-2016.pdf. Acesso em: out. 2017.

São Paulo. CRH. Deliberação CRH n°146 de 2012. Relatório de Situação dos Recursos Hídricos da Bacia Hidrográfica. Roteiro para Elaboração e Fichas Técnicas dos Parâmetros. São Paulo: CRH, 2017.