

COMITÊ DA BACIA HIDROGRÁFICA DO RIO Sorocaba e Médio Tietê

Relatório I – Informações Básicas Plano de Bacia Hidrográfica 2016-2027 Fundação Agência de Bacia Hidrográfica do Rio Sorocaba e Médio Tietê

DIAGNÓSTICO, Versão 01

Fones: (15) 3031.3110 / (15) 3222.2065 E-MAIL: fabhsmt2003@gmail.com

LISTA DE FIGURAS

Figura 1 - Localização da Bacia do Sorocaba Médio Tietê entre as 22 UGRHIs do Estado	7
Figura 2 – Localização das Seis Sub-Bacias da UGRHI 10	
Figura 3 - Potencialidades de Água Subterrânea na UGRHI 10	
Figura 4 - Mapa de áreas potencialmente críticas para uso da água subterrânea, classificadas como)
"Alta Vulnerabilidade"	34
Figura 5 - Limite da APRM-SAG no Estado de São Paulo	36
Figura 6 - Mapa de Regionalização de Diretrizes de Utilização e Proteção das Águas Subterrâneas	39
Figura 7 - Disponibilidade per capita de águas superficiais- Qmédio em relação à população total:	
m³/hab.ano	42
Figura 8- Disponibilidade per capita de águas subterrâneas - Qmédio em relação à população total	
m³/hab.ano	
Figura 9- Demanda de água superficial e subterrânea em m3/s	
Figura 10 - Vazão total outorgada para captações superficiais e subterrâneas em m3/s	
Figura 11 - Captação superficial e subterrânea em relação à área total da bacia: nº de outorgas/ 100	
km2	
Figura 12- Proporção de captações de água superficial em relação ao total: %	
Figura 13 – Demanda de água por tipos de uso da água na bacia em m³/s	
Figura 14- Vazão outorgada para uso urbano / Volume estimado para abastecimento urbano: % Figura 15- Outorgas para outras interferências em cursos d'água	
Figura 16- Número total de barramentos outorgados	
Figura 17- Demanda total (superficial e subterrânea) em relação ao Q95%: %	
Figura 18- Demanda total (superficial e subterrânea) em relação ao Qmédio: %	
Figura 19- Demanda superficial em relação a vazão mínima superificial (Q7,10): %	
Figura 20- Demanda subterrânea em relação às reservas explotáveis: %	
Figura 21 - Mapa dos pontos de monitoramento da qualidade da água superficial da UGRHI 10	
Figura 22 - Quantidade de pontos de monitoramento do IQA na UGRHI 10 e as suas respectivas	
classificações	60
Figura 23 - Distribuição dos pontos de monitoramento do IQA na UGRHI 10, referente ao ano de	
2015	61
Figura 24 - Quantidade de pontos de monitoramento do IAP na UGRHI 10 e as suas respectivas	
classificações.	63
Figura 25 - Distribuição dos pontos de monitoramento do IAP na UGRHI 10, referente ao ano de	
2015	64
Figura 26 - Quantidade de pontos de monitoramento do IVA na UGRHI 10 e as suas respectivas	
classificações	
Figura 27 - Distribuição dos pontos de monitoramento do IVA na UGRHI 10, referente ao ano de	
2015	66
Figura 28 - Quantidade de pontos de monitoramento do IET na UGRHI 10 e as suas respectivas	<u> </u>
classificações	6/
Figura 29 - Distribuição dos pontos de monitoramento do IET na UGRHI 10, referente ao ano de	60
2015	08
Figura 30 - Quantidade de pontos que atendem ou não atendem o valor de oxigênio dissolvido	60
conforme a Resolução CONAMA 357/2005	09

E-MAIL: fabhsmt2003@gmail.com

Figura 31 - Número de registros de mortandade de peixes na UGRHI 10, entre os anos de
2011 e 2015
Itupararanga entre os anos de 2011 e 201571
Figura 34 - Gráfico referente ao número de amostras conformes e desconformes de concentração de
nitrato em águas subterrâneas da UGRHI10
Figura 35 - Classificação da água subterrânea: nº de amostras por categoria
Figura 36 - Índice de atendimento de água: %
Figura 37 - Índice de perdas do sistema de distribuição de água: %
Figura 38 - Carga orgânica poluidora doméstica: kg DBO/dia
Figura 39 - ICTEM (Indicador de Coleta e Tratabilidade de Esgoto da População Urbana de
Município)
Figura 40 - Resíduo sólido urbano gerado: ton/dia
Figura 42 - IQR da instalação de destinação final de resíduo sólido urbano
Figura 43 - Mapa de uso e ocupação do solo da UGRHI 1085
Figura 44 - Área inundada por reservatórios hidrelétricos na UGRHI 10
Figura 45 - Unidades de Conservação (UC) e Terras Indígenas (TI) existentes na UGRHI 10 87
Figura 46 - Mapa de fitofisionomias existentes na UGRHI 1093
Figura 47 - Mapa de municípios com maior concentração de processos erosivos na UGRHI 10 95
Figura 48 - Número de enchentes e de desalojados na UGRHI 1096
Figura 49 - Número de áreas contaminadas e remedias na UGRHI 10 entre os anos de 2011 e 2015
97
Figura 50 - Número de ocorrências/atendimentos de derrame de produtos químicos no solo/água na
UGRHI 1098
LISTA DE TABELAS
Tabela 1 - Denominação, área e municípios integrantes das Sub -Bacias da UGRHI 108
Tabela 2 - Distribuição das áreas dos 35 municípios com sede na UGRHI 109
Tabela 3 – Denominação resumida das 6 Sub-Bacias da UGRHI 10 e a área total de cada uma 11
Tabela 4 - População na UGRHI 10, por município, no período 2007 - 2016
Tabela 5- População Urbana e Rural na UGRHI 10, por município, no período 2007-2016
Tabela 6- T.G.C.A dos 35 municípios na UGRHI 10, no período 2000-2010 e 2010-2016
Tabela 7- Densidade Demográfica dos 35 municípios na UGRHI 10, no período 2007-2016
Tabela 8 - Taxa Urbanização dos 35 municípios na UGRHI 10, no período 2007-2016
Tabela 9 - Distribuição, Características e condições de Ocorrência dos Sistemas Aquíferos29
Tabela 10 - Distribuição da área da APRM-SAG em relação as UGRHI
Tabela 11 - Lista dos municípios pertencentes a APRM-SAG
Tabela 12 - Descrição das redes de monitoramento de águas superficiais da CETESB56
Tabela 13 - Descrição e localização dos pontos de monitoramento da qualidade das águas da
UGRHI 1058
Tabela 14 - Índices de qualidade das águas superficiais utilizados pela CETESB59

E-MAIL: fabhsmt2003@gmail.com

Fundação Agência da Bacia Hidrográfica do Rio Sorocaba e Médio Tietê | FABH - SMT

Tabela 15 - Resultados da análise de regressão linear, referente aos valores de IQA nos	
últimos 5 anos na UGRHI 10.	61
Tabela 16 - Valores de referência para o Índice de Balneabilidade utilizado pela CETESB	.72
Tabela 17 - Características de poços de monitoramento das águas subterrâneas na UGRHI 10 e as	
respectivas localizações	73
Tabela 18 - Indicador de Potabilidade das Águas Subterrâneas da UGRHI 10	75
Tabela 19 – Situação do Esgotamento Sanitário de todos os municípios pertencentes à UGRHI 10	80
Tabela 20 - Categorias das fitofisionomias observadas na UGRHI 10 e suas respectivas áreas,	
divididas por tamanhos de fragmentos florestais	90
Tabela 21 - Vegetações observadas nos municípios da UGRHI 10 e suas respectivas áreas, dividid	las
por tamanhos de fragmentos florestais	91
Tabela 22 - Áreas de Preservação Permanente na UGRHI 10	94
Tabela 23 - Número de áreas contaminadas nas UGRHI do Estado de São Paulo1	.00
Tabela 24 - Número de áreas contaminadas nas LIGRHI do Estado de São Paulo 1	01

E-MAIL: fabhsmt2003@gmail.com

Diretoria do CBH-SMT (2015-2016)

Presidente: Antônio Carlos Pannunzio (Prefeito de Sorocaba)

Vice-Presidente: Wendell Wanderley Rodrigues (ICATU)
Secretário Executivo: Rafael Dal Medico Neto (Cetesb)

Secretário Executivo Adjunto: Rosângela Aparecida Cesar (Cetesb)

FABH-SMT

Presidente: José Manoel Corrêa Coelho (Prefeito de Tatuí) Vice-Presidente: Wendell Wanderley Rodrigues (ICATU) Secretário Executivo: Rafael Dal Medico Neto (Cetesb)

Secretário Executivo Adjunto: Rosângela Aparecida Cesar (Cetesb)

Diretoria Técnica: James Martins Pereira

Diretoria Financeira Administrativa: Roberto Gomes Rodrigues

Estagiário de Engenharia Ambiental: Danillo Rosa Estagiário Técnico Administrativo: Leonardo Rafael

Grupo de Trabalho Responsável:

Grupo de Trabalho Unidade de Gerenciamento do Plano de Bacias

Coordenador: Mauro Tomazela (Fatec-Tatuí)

Equipe Técnica:

Diretoria Técnica - Fundação Agencia de Bacia Hidrográfica do Rio Sorocaba e Médio Tietê. FABH-SMT

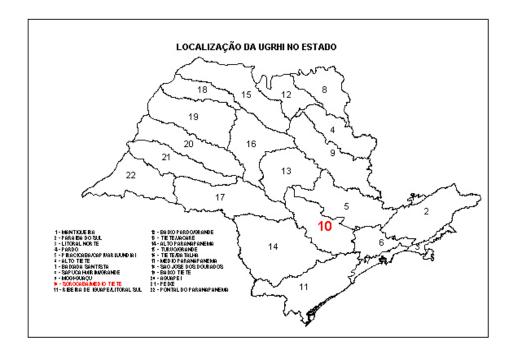
4. DIAGNÓSTICO

4.1 CARACTERIZAÇÃO GERAL DA UGRHI

A Bacia Hidrográfica do Rio Sorocaba e Médio Tietê (UGRHI 10) está localizada no centro-sudeste do Estado de São Paulo e é constituída pela Bacia do rio Sorocaba e de outros tributários do rio Tietê, tanto da margem esquerda como da direita, no trecho compreendido entre a barragem do Rasgão, a montante, e a barragem de Barra Bonita, a jusante, com exceção das bacias dos rios Piracicaba, Capivari e Jundiaí, afluentes do rio Tietê pela margem direita, que constituem a UGRHI 0 5. Todos os corpos d'água da UGRHI são de domínio estadual.

A UGRHI 10 – Tietê/Sorocaba recebe as águas do Alto Tietê (UGRHI 06), a leste, e tem, a jusante (noroeste), a UGRHI 13 (Tietê/Jaca ré). As bacias dos rios Piracicaba, Capivari e Jundiaí, que deságuam na margem direita do rio Tietê e constituem a UGRHI 05, são os limites nordeste e norte da UGRHI 10, enquanto que a sul-sudoeste-noroeste são limites as bacias do Alto e Médio Paranapanema (UGRHIs 14 e 17, respectivamente). No extremo sul-sudeste há pequena interface com a Bacia do Ribeira de Iguape e Litoral Sul (UGRHI 11). As regras operacionais adotadas para o Sistema Tietê/Billings estabelecem relação entre a UGRHI 10 e a Baixada Santista (UGRHI 07), embora não haja limite físico entre ambas.

A Figura 1 mostra a localização da Bacia Sorocaba/Médio Tietê no Estado de São Paulo e seus limites.


As áreas oficiais adotadas para o Estado e seus Municípios foram aprovadas pela Resolução № 05 do IBGE, de 10/10/2002, publicada no Diário Oficial da União em 11/10/2002, onde se constata que a área do Estado d e São Paulo perfaz o total de 248.209 km².

Considerando a área total do Estado e os limites da s 22 UGRHIs, foram calculadas as áreas de cada uma delas (IPT/DAEE, 2005), resultando, para a UGRHI 10, uma área total de 11.827,824 km². Entretanto, a área total da UGRHI 10, calculada a partir da base cartográfica do Desenho 1, Mapa de Caracterização Geral da Bacia,

IPT (2006), utilizando-se o software *MapInfo Professional*, versão 5.01, foi de 11.911,953 km², sendo 11.657,522 km² de terrenos expostos da Bacia, enquanto que os outros 254,431 km² tratam-se de áreas inundadas pela instalação dos reservatórios.

Fonte: Relatório de Situação 2015 ano base 2014

Figura 1 - Localização da Bacia do Sorocaba Médio Tietê entre as 22 UGRHIs do Estado

Em função dessa diferença encontrada, foi necessário o realizar correções, de forma que se mantivesse a área da UGRHI 10 (ou seja, 11.8 27,824 km²), respeitando a proporcionalidade em relação às demais do Estado. Para tanto, utilizaram-se as áreas oficiais de cada um dos municípios com área na UGRH I, efetuando-se as devidas correções proporcionais.

A área da Bacia Hidrográfica Sorocaba/Médio Tietê e está subdividida em Sub-Bacias, sendo três delas compostas por drenagens de pequeno e médio porte, que drenam para o rio Tietê, e outras três que compõem a bacia do rio Sorocaba, resultando em seis Sub-Bacias: quais sejam: Médio Tietê Inferior, Médio Tietê Médio, Baixo Sorocaba, Médio Sorocaba, Médio Tietê Superior e Alto Sorocaba.

A Tabela 01 apresenta a relação das Sub-Bacias da UGRHI 10 (com ordenação aproximadamente de oeste a leste e de norte a sul) e a área de cada uma delas, na Tabela 02 distribuição das áreas dos 35 municípios com sede na UGRHI 10 e na Tabela 03 a denominação resumida das 6 Sub-Bacias da UGRHI 10 e a área total, respectivamente. Na **Figura 02** pode ser observada a localização das Sub-Bacias dentro da área da UGRHI.

Tabela 1 - Denominação, área e municípios integrantes das Sub -Bacias da UGRHI 10

N°	Nome	Sigla	Área (Km²)	Municípios
1	Médio Tietê Inferior	SB1- MTI	4.141,332	Anhembi, Barra Bonita ⁽⁷⁾ , Bofete, Botucatu, Conchas, Dois Córregos ⁽⁷⁾ , Igaraçu do Tietê ⁽⁷⁾ , Laranjal Paulista ⁽³⁾ , Mineiros do Tietê ⁽⁷⁾ , Pereiras, Piracicaba ⁽⁷⁾ , Porangaba, Saltinho, São Manuel ⁽⁷⁾ , Tietê ⁽²⁾ , Torre de Pedra.
2	Médio Tietê Médio	SB2- MTM	1.025,181	Boituva, Cerquilho, Jumirim ⁽³⁾ , Laranjal Paulista, Porto Feliz, Rafard ⁽⁷⁾ , Rio das Pedras ⁽⁷⁾ , Saltinho ⁽⁷⁾ , Sorocaba ⁽⁴⁾ , Tietê.
3	Baixo Sorocaba	SB3- BS	3.136,384	Alambari, Araçoiaba da Serra ⁽⁴⁾ , Boituva ⁽²⁾ , Capela do Alto, Cerquilho ⁽²⁾ , Cesário Lange, Guareí ⁽⁷⁾ , Iperó ⁽⁴⁾ , Itapetininga ⁽⁷⁾ , Jumirim, Laranjal Paulista, Pereiras ⁽¹⁾ , Piedade, Pilar do Sul ⁽⁷⁾ , Quadra, Salto de Pirapora, Sarapuí, Tatuí.
4	Médio Sorocaba	SB4- MS	1.212,364	Alumínio, Araçoiaba da Serra, Boituva ⁽²⁾ , Capela do Alto ⁽³⁾ , Iperó, Itu ⁽⁵⁾ , Mairinque, Porto Feliz ⁽²⁾ , Salto de Pirapora ⁽³⁾ , Sorocaba, Votorantim.
5	Médio Tietê Superior	SB5- MTS	1.388,065	Araçariguama, Cabreúva, Cajamar ⁽⁷⁾ , Elias Fausto ⁽⁷⁾ , Indaiatuba ⁽⁷⁾ , Itapevi ⁽⁷⁾ , Itu, Jundiaí ⁽⁷⁾ , Mairinque ⁽⁴⁾ , Pirapora do Bom Jesus ⁽⁷⁾ , Porto Feliz ⁽²⁾ , Salto, Santana de Parnaíba ⁽⁷⁾ , São Roque.
6	Alto Sorocaba	SB6- AS	924,498	Alumínio ⁽⁵⁾ , Cotia ⁽⁷⁾ , Ibiúna, Mairinque ⁽⁴⁾ , Piedade ⁽³⁾ , São Roque ⁽⁵⁾ , Vargem Grande Paulista, Votorantim ⁽⁵⁾ .
	Total		11.827,824	

Fonte: Relatório final Plano de Bacia da UGRHI 10 Outubro de 2008

Tabela 2 - Distribuição das áreas dos 35 municípios com sede na UGRHI 10

Município	Área do	Município n	a UGRH	I 10 (Km²)	Área Municíp da UGR	Total	
·	Emersa	Submersa	%	Subtotal	Km²	%	(Km²)
Alambari	159,19	0	100	159,19	0	0	159,19
Alumínio	82,177	1,562	100	83,739	0	0	83,739
Anhembi	608,914	51,847	89,7	660,761	75,702	10,3	736,463
Araçariguama	146,331	0	100	146,331	0	0	146,331
Araçoiaba da Serra	255,091	0,459	100	255,55	0	0	255,55
Bofete	470,207	0	72	470,207	183,152	28	653,36
Boituva	249,014	0	100	249,014	0	0	249,014
Botucatu	749,326	46,668	53,7	795,994	686,88	46,3	1.482,87
Cabreúva	134,123	0	51,6	134,123	125,683	48,4	259,807
Capela do Alto	169,981	0	100	169,981	0	0	169,981
Cerquilho	127,758	0	100	127,758	0	0	127,758
Cesário Lange	190,189	0	100	190,189	0	0	190,189
Conchas	457,541	10,702	100	468,243	0	0	468,243
Ibiúna	567,04	11,36	54,6	578,4	481,288	45,4	1.059,69
Iperó	170,565	0,375	100	170,94	0	0	170,94
Itu	565,512	2,573	88,8	568,085	71,896	11,2	639,981
Jumirim	55,964	0,774	100	56,738	0	0	56,738

Laranjal Paulista	380,368	6,395	100	386,763	0	0	386,763
Mairinque	209,757	0	100	209,757	0	0	209,757
Pereiras	222,156	0	100	222,156	0	0	222,156
Piedade	481,112	2,387	64,9	483,499	262,036	35,1	745,536
Porangaba	266,565	0	100	266,565	0	0	266,565
Porto feliz	550,047	6,516	100	556,563	0	0	556,563
Quadra	205,033	0	100	205,033	0	0	205,033
Salto	78,496	1,994	60	80,49	53,768	40	134,258
Salto de Pirapora	280,312	0	100	280,312	0	0	280,312
São Manuel	340,459	43,612	59	384,071	266,970	41	651,0410
São Roque	284,238	0	92,4	284,238	23,316	7,6	307,553
Sarapuí	293,395	0	82,8	293,395	61,067	17,2	354,463
Sorocaba	449,123	0	100	449,123	0	0	449,122
Tatuí	524,156	0	100	524,156	0	0	524,156
Tietê	310,006	10,122	81,6	320,128	72,38	18,4	392,509
Torre de Pedra	71,303	0	100	71,303	0	0	71,303
Vargem Grande Paulista	27,211	0	81,2	27,211	6,301	18,8	33,512
Votorantim	175,586	8,413	100	183,999	0	0	183,998
Total	9967,785	162,149	3073,1	10.129,93	2.103,47	326,9	12.233,41

Fonte: Relatório final Plano de Bacia da UGRHI 10 Outubro de 2008

Tabela 3 – Denominação resumida das 6 Sub-Bacias da UGRHI 10 e a área total de cada uma

No	SUB-BACIA	ÁREA
1	Médio Tietê Inferior	4.141,33
2	Médio Tietê Médio	1.025,18
3	Baixo Sorocaba	3.136,38
4	Médio Sorocaba	1.212,36
5	Médio Tietê Superior	1.388,06
6	Alto Sorocaba	924,498
Total	11.827,8	

Fonte: Relatório final Plano de Bacia da UGRHI 10 Outubro de 2008

1 - MÉDIO TIETÉ INFERIOR
2 - MÉDIO TIETÉ MÉDIO
3 - BAIXO SOROCABA
4 - MÉDIO SOROCABA
5 - MÉDIO TIETÉ SUPERIOR
6 - ALTO SOROCABA

Figura 2 – Localização das Seis Sub-Bacias da UGRHI 10

Fonte: Relatório de Situação de 2015 base 2014

Aspectos Socioeconômicos

O IDHM (Índice de Desenvolvimento Humano Municipal) dos municípios da UGRHI 10 distribui-se entre as classes alta (IDHM ≥0,8), com 11 municípios (32,4%), e média (0,5 ≤ IDHM < 0,8), com 23 municípios. Não há municípios na classe baixa

(IDHM < 0,5). Em termos das componentes do IDHM, quanto ao IDHM - Longevidade, predominou o enquadramento médio (0,5 ≤ IDHM < 0,8), com 29 municípios (85,3%). Já para o IDHM - Educação, todos os municípios da Bacia (100%) enquadraram-se como alto (IDHM ≥0,8). Da mesma forma, para o IDHM - Renda, todos os municípios da bacia apresentaram enquadramento médio (0,5 ≤ IDHM < 0,8).

Considerando-se a média global dos municípios da UGRHI 10, tem-se IDHM = 0,787, expressando condições de IDM médio. Este valor é ligeiramente superior à média de IDHM de todos os municípios do Estado de São Paulo, que é igual a 0,779. Ainda considerando-se valores médios, somente a SB2-MTM enquadrou-se com IDHM alto; todas as demais Sub-Bacias enquadraram-se como IDHM médio. Da mesma foram, para as três componentes do IDHM, a Escolaridade é a que apresenta melhor desempenho dentre os municípios da UGRHI 10 (0,856), enquanto a componente Renda é a de pior desempenho relativo (0,704). A componente Longevidade posicionou-se intermediariamente (0,778).

Em termos de população (Tabelas 04 e 05), observa-se que ela está mais concentrada na SB4-MS, influenciada sobremaneira pelo município de Sorocaba, tendência que persistirá no período 2008-2019 (conforme apresentado no item 4.3), quando a população atingirá 1.050.589 habitantes (e m 2019), a partir dos 735.244 habitantes de 2007. A Sub-Bacia menos populosa é a SB6-AS, com 166.043 habitantes em 2007, assim permanecendo até 2019 (conforme apresentado no item 4.3), quando possuirá 173.149 habitantes. Esse indicador é de suma importância, pois traz reflexos em todos os aspectos de qualidade e quantidade dos Recursos Hídricos da UGRHI. A população total da Bacia, que em 2007 era de 2.791.082 habitantes, atingirá 2.917.479 habitantes em 2019.

Tabela 4 - População na UGRHI 10, por município, no período 2007 - 2016

MUNICÍPIO	ANO											
MUNICIPIO	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016		
Alambari	4.497	4.620	4.749	4.872	4.962	5.054	5.148	5.244	5.341	5.426		
Alumínio	16.415	16.549	16.687	16.825	16.941	17.059	17.176	17.296	17.415	17.525		
Anhembi	5.300	5.416	5.531	5.643	5.745	5.849	5.954	6.063	6.172	6.269		
Araçariguama	15.261	15.869	16.454	17.019	17.423	17.837	18.261	18.694	19.138	19.493		
Araçoiaba da Serra	25.006	25.732	26.452	27.226	27.742	28.268	28.804	29.351	29.907	30.388		
Bofete	8.908	9.131	9.364	9.597	9.748	9.901	10.057	10.215	10.376	10.512		
Boituva	43.868	45.284	46.720	48.177	49.147	50.137	51.147	52.177	53.228	54.017		
Botucatu	121.534	123.447	125.320	127.156	128.660	130.183	131.723	133.281	134.858	136.091		
Cabreúva	38.952	39.782	40.648	41.525	42.301	43.092	43.899	44.719	45.556	46.306		
Capela do Alto	16.553	16.872	17.184	17.502	17.793	18.089	18.390	18.696	19.006	19.304		
Cerquilho	36.440	37.449	38.458	39.520	40.259	41.012	41.778	42.560	43.355	43.949		
Cesário Lange	14.729	14.984	15.247	15.516	15.711	15.909	16.108	16.311	16.516	16.659		
Conchas	15.867	16.011	16.138	16.276	16.363	16.451	16.539	16.628	16.717	16.799		
Ibiúna	69.522	70.147	70.676	71.157	71.689	72.224	72.764	73.309	73.857	74.364		
Iperó	25.187	26.168	27.157	28.198	28.835	29.486	30.153	30.835	31.531	32.077		
Itu	148.619	150.390	152.123	153.980	155.611	157.259	158.925	160.608	162.309	163.775		
Jumirim	2.617	2.677	2.734	2.792	2.846	2.902	2.959	3.017	3.075	3.120		
Laranjal Paulista	24.367	24.646	24.923	25.223	25.490	25.759	26.032	26.307	26.585	26.830		
Mairinque	42.184	42.555	42.885	43.195	43.523	43.853	44.186	44.522	44.860	45.149		
Pereiras	7.031	7.169	7.305	7.443	7.544	7.648	7.752	7.858	7.965	8.056		
Piedade	51.706	51.835	51.959	52.126	52.255	52.385	52.515	52.645	52.776	52.927		

Porangaba	7.848	8.010	8.155	8.310	8.415	8.521	8.629	8.738	8.849	8.939
Porto feliz	47.941	48.246	48.550	48.864	49.155	49.448	49.743	50.041	50.339	50.607
Quadra	3.044	3.102	3.165	3.231	3.280	3.329	3.379	3.430	3.482	3.526
Salto	101.814	102.973	104.152	105.407	106.414	107.432	108.459	109.496	110.542	111.492
Salto de Pirapora	38.671	39.136	39.569	40.087	40.515	40.947	41.384	41.826	42.273	42.656
São Manuel	37.927	38.046	38.170	38.327	38.452	38.578	38.704	38.830	38.957	39.080
São Roque	75.359	76.464	77.572	78.711	79.648	80.596	81.557	82.528	83.510	84.281
Sarapuí	8.714	8.809	8.904	9.016	9.124	9.233	9.343	9.455	9.569	9.675
Sorocaba	558.377	567.469	576.440	585.780	593.183	600.678	608.269	615.955	623.739	630.550
Tatuí	103.231	104.506	105.808	107.202	108.492	109.799	111.122	112.459	113.814	115.049
Tietê	35.215	35.743	36.267	36.789	37.227	37.670	38.118	38.571	39.031	39.431
Torre de Pedra	2.234	2.248	2.256	2.253	2.260	2.266	2.273	2.279	2.286	2.293
Vargem Grande Paulista	39.832	40.873	41.879	42.899	43.871	44.865	45.882	46.921	47.985	48.905
Votorantim	105.210	106.387	107.522	108.695	109.820	110.957	112.104	113.264	114.437	115.495

Fonte: Relatório final Plano de Bacia da UGRHI 10 Outubro de 2008

Tabela 5- População Urbana e Rural na UGRHI 10, por município, no período 2007-2016

.,	20	07	20	08	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16
MUNICÍPIO	Urbana	Rural	Urbana	Rural	Urbana		Urbana		Urbana	Rural	Urbana									
Alambari	3233	1264	3370	1250	3513	1236	3663	1209	3767	1195	3874	1180	3982	1166	4092	1152	4204	1137	4307	1119
Alumínio	13985	2430	14027	2522	14069	2618	14111	2714	14209	2732	14308	2751	14406	2770	14506	2790	14606	2809	14698	2827
Anhembi	3931	1369	4039	1377	4150	1381	4263	1380	4360	1385	4458	1391	4558	1396	4661	1402	4765	1407	4860	1409
Araçariguama	13135	2126	14320	1549	15612	842	17019	-	17423	-	17837	-	18261	-	18694	-	19138	-	19493	-
Araçoiaba da Serra	17014	7992	17562	8170	18128	8324	18714	8512	19068	8674	19430	8838	19798	9006	20174	9177	20557	9350	20887	9501
Bofete	5831	3077	5925	3206	6021	3343	6119	3478	6215	3533	6312	3589	6412	3645	6513	3702	6615	3761	6702	3810
Boituva	40905	2963	42326	2958	43797	2923	45319	2858	46232	2915	47163	2974	48113	3034	49082	3095	50071	3157	50813	3204
Botucatu	116501	5033	118471	4976	120475	4845	122512	4644	124001	4659	125509	4674	127034	4689	128576	4705	130137	4721	131367	4724
Cabreúva	31986	6966	33021	6761	34090	6558	35194	6331	36093	6208	37006	6086	37932	5967	38869	5850	39820	5736	40695	5611
Capela do Alto	13280	3273	13674	3198	14080	3104	14497	3005	14815	2978	15138	2951	15465	2925	15798	2898	16135	2871	16462	2842
Cerquilho	34293	2147	35323	2126	36383	2075	37475	2045	38176	2083	38890	2122	39616	2162	40358	2202	41112	2243	41675	2274
Cesário Lange	9965	4764	10133	4851	10303	4944	10476	5040	10607	5104	10741	5168	10875	5233	11013	5298	11151	5365	11248	5411
Conchas	12570	3297	12772	3239	12977	3161	13187	3089	13336	3027	13485	2966	13633	2906	13781	2847	13928	2789	14069	2730
lbiúna	23716	45806	24108	46039	24506	46170	24912	46245	25232	46457	25555	46669	25883	46881	26214	47095	26549	47308	26872	47492
lperó	16091	9096	16516	9652	16952	10205	17400	10798	17793	11042	18195	11291	18606	11547	19027	11808	19456	12075	19794	12283
ltu	137622	10997	139752	10638	141915	10208	144113	9867	145906	9705	147713	9546	149534	9391	151369	9239	153218	9091	154843	8932
Jumirim	1439	1178	1497	1180	1558	1176	1620	1172	1674	1172	1730	1172	1787	1172	1846	1171	1906	1169	1958	1162
Laranjal Paulista	21605	2762	21927	2719	22254	2669	22587	2636	22853	2637	23121	2638	23393	2639	23668	2639	23945	2640	24193	2637
Mairinque	34458	7726	34528	8027	34598	8287	34668	8527	34931	8592	35196	8657	35463	8723	35733	8789	36004	8856	36236	8913
Pereiras	4708	2323	4794	2375	4881	2424	4971	2472	5038	2506	5108	2540	5177	2575	5248	2610	5319	2646	5380	2676
Piedade	23217	28489	23394	28441	23573	28386	23752	28374	23893	28362	24035	28350	24177	28338	24320	28325	24464	28312	24617	28310
Porangaba	3829	4019	3889	4121	3950	4205	4012	4298	4063	4352	4114	4407	4166	4463	4219	4519	4273	4576	4316	4623
Porto feliz	39629	8312	40104	8142	40585	7965	41072	7792	41478	7677	41885	7563	42292	7451	42701	7340	43109	7230	43490	7117
Quadra	776	2268	793	2309	810	2355	827	2404	840	2440	854	2475	868	2511	882	2548	896	2586	909	2617
Salto	100639	1175	101963	1010	103305	847	104666	741	105666	748	106677	755	107696	763	108726	770	109765	777	110708	784
Salto de Pirapora	30115	8556	30547	8589	30985	8584	31428	8659	31776	8739	32128	8819	32484	8900	32844	8982	33208	9065	33523	9133
São Manuel	36305	1622	36666	1380	37031	1139	37398	929	37593	859	37780	798	37958	746	38130	700	38296	661	38453	627
São Roque	63586	11773	66087	10377	68686	8886	71388	7323	73012	6636	74578	6018	76095	5462	77565	4963	78992	4518	80172	4109
Sarapuí	6126	2588	6292	2517	6462	2442	6638	2378	6786	2338	6934	2299	7084	2259	7235	2220	7388	2181	7535	2140
Sorocaba	550149	8228	559866	7603	569755	6685	579819	5961	587146	6037	594565	6113	602079	6190	609687	6268	617391	6348	624133	6417
Tatuí	96769	6462	98527	5979	100317	5491	102138	5064	103638	4854	105143	4656	106652	4470	108164	4295	109684	4130	111079	
Tietê	31835	3380	32364	3379	32901	3366	33447	3342	33863	3364	34283	3387	34708	3410	35138	3433	35575	3456	35958	3473
Torre de Pedra	1403	831	1424	824	1446	810	1468	785	1487	773	1505	761	1524	749	1542	737	1560	726	1579	714
Vargem Grande Paulista	39832	-	40873	-	41879	-	42899	-	43871	-	44865	-	45882	-	46921	-	47985	-	48905	-
Votorantim	100810	4400	102041	4346	103287	4235	104549	4146	105631	4189	106725	4232	107828	4276	108944	4320	110072	4365	111090	4405

Fonte: Relatório final Plano de Bacia da UGRHI 10 Outubro de 2008

Crescimento Populacional (Taxa geométrica de crescimento anual)

Tabela 6- T.G.C.A dos 35 municípios na UGRHI 10, no período 2000-2010 e 2010-2016

MUNICÍPIO	T.G.C.A	. (% a.a.)
MUNICIPIO	2000/2010	2010/2016
Alambari	2,94	1,81
Alumínio	1	0,68
Anhembi	2,23	1,77
Araçariguama	4,36	2,29
Araçoiaba da Serra	3,26	1,85
Bofete	2,72	1,53
Boituva	3,47	1,93
Botucatu	1,63	1,14
Cabreúva	2,35	1,83
Capela do Alto	2,11	1,65
Cerquilho	3	1,79
Cesário Lange	1,89	1,19
Conchas	0,91	0,53
Ibiúna	1,03	0,74
Iperó	4,42	2,17
Itu	1,32	1,03
Jumirim	2,46	1,87
Laranjal Paulista	1,32	1,03
Mairinque	0,81	0,74
Pereiras	1,83	1,33
Piedade	0,4	0,25
Porangaba	2,27	1,22
Porto feliz	0,73	0,59
Quadra	2,03	1,47
Salto	1,27	0,94
Salto de Pirapora	1,38	1,04
São Manuel	0,49	0,32
São Roque	1,69	1,15
Sarapuí	1,47	1,18
Sorocaba	1,75	1,24
Tatuí	1,41	1,18
Tietê	1,52	1,16
Torre de Pedra	0,55	0,29
Vargem Grande Paulista	2,83	2,21

Votorantim	1,27	1,02	
------------	------	------	--

Fonte: Relatório final Plano de Bacia da UGRHI 10 Outubro de 2008

Demografia

Tabela 7- Densidade Demográfica dos 35 municípios na UGRHI 10, no período 2007-2016

MUNICÍPIO	ANO												
MUNICIPIO	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016			
Alambari	28,25	29,02	29,83	30,59	31,15	31,73	32,32	32,93	33,46	34			
Alumínio	196,02	197,62	199,27	201,11	202,5	203,91	205,31	206,74	208,16	209,48			
Anhembi	7,2	7,35	7,51	7,66	7,8	7,94	8,08	8,23	8,38	8,51			
Araçariguama	104,29	108,45	112,44	117,21	119,99	122,84	125,76	128,75	131,8	134,25			
Araçoiaba da Serra	97,85	100,69	103,51	106,59	108,61	110,67	112,77	114,91	117,13	119,01			
Bofete	13,63	13,98	14,33	14,68	14,92	15,15	15,39	15,63	15,88	16,08			
Boituva	176,17	181,86	187,62	193,52	197,42	201,39	205,45	209,59	213,79	216,96			
Botucatu	81,96	83,25	84,51	85,76	86,78	87,8	88,84	89,89	90,96	91,79			
Cabreúva	149,92	153,12	156,45	159,57	162,55	165,59	168,69	171,84	175,06	177,94			
Capela do Alto	97,38	99,26	101,09	103,02	104,73	106,47	108,25	110,05	111,87	113,63			
Cerquilho	285,22	293,12	301,02	309,23	315,02	320,91	326,9	333,02	339,24	343,89			
Cesário Lange	77,44	78,78	80,17	81,33	82,36	83,39	84,44	85,5	86,75	87,5			
Conchas	33,89	34,19	34,47	34,93	35,11	35,3	35,49	35,68	35,86	36,04			
Ibiúna	65,61	66,2	66,69	67,25	67,75	68,26	68,77	69,28	69,8	70,28			
Iperó	147,34	153,08	158,87	165,6	169,34	173,16	177,08	181,08	185,16	188,37			
Itu	229,41	232,22	234,99	237,7	240,75	243,3	245,88	248,48	251,11	253,32			
Jumirim	45,03	46,12	47,18	48,18	49,25	50,2	51,19	52,2	53,22	54,24			
Laranjal Paulista	62,19	63	63,72	64,44	65,68	66,38	67,08	67,79	68,5	69,18			
Mairinque	201,11	202,87	204,45	205,39	206,95	208,52	210,1	211,7	213,47	214,84			

Pereiras	31,65	32,27	32,88	33,34	33,79	34,25	34,72	35,2	35,7	36,1
Piedade	69,35	69,53	69,69	69,79	69,97	70,14	70,31	70,49	70,66	70,87
Porangaba	29,44	30,05	30,59	31,28	31,67	32,07	32,48	32,89	33,31	33,64
Porto feliz	86,14	86,69	87,23	87,77	88,3	88,82	89,35	89,89	90,43	90,91
Quadra	14,55	14,85	15,13	15,44	15,71	15,95	16,19	16,43	16,68	16,93
Salto	758,33	766,97	775,75	791,28	798,84	806,49	814,2	821,98	830,77	837,91
Salto de Pirapora	137,96	139,62	141,16	142,86	144,38	145,92	147,48	149,05	150,6	151,96
São Manuel	58,26	58,44	58,63	58,89	59,09	59,28	59,47	59,67	59,87	60,06
São Roque	245,03	248,62	252,23	256,46	259,52	262,6	265,74	268,9	272,1	274,61
Sarapuí	24,58	24,85	25,12	25,56	25,87	26,18	26,49	26,81	27,14	27,44
Sorocaba	1243,27	1263,51	1283,49	1302,31	1318,77	1335,43	1352,31	1369,4	1384,92	1400,04
Tatuí	194,4	196,95	199,38	201,86	204,79	207,25	209,75	212,28	214,83	217,31
Tietê	89,72	91,06	92,4	90,97	92,05	93,15	94,26	95,38	96,52	97,5
Torre de Pedra	31,33	31,53	31,64	31,58	31,67	31,76	31,86	31,94	32,04	32,14
Vargem Grande Paulista	1156,7	1188,66	1219,73	1249,75	1009,86	1032,74	1056,14	1080,08	1104,54	1129,32
Votorantim	571,79	578,19	584,36	590,41	596,52	602,7	608,93	615,23	623,57	629,33

Fonte: Adaptado SEADE – informações dos municípios paulistas (IMP)

Tabela 8 - Taxa Urbanização dos 35 municípios na UGRHI 10, no período 2007-2016

MUNICÍPIO	ANO											
WIUNICIPIO	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016		
Alambari	71,89	72,94	73,97	75,18	75,92	76,65	77,35	78,03	78,71	79,38		
Alumínio	85,2	84,76	84,31	83,87	83,87	83,87	83,87	83,87	83,87	83,87		
Anhembi	74,17	74,58	75,03	75,54	75,89	76,22	76,55	76,88	77,2	77,52		
Araçariguama	86,07	90,24	94,88	100	100	100	100	100	100	100		
Araçoiaba da Serra	68,04	68,25	68,53	68,74	68,73	68,73	68,73	68,73	68,74	68,73		
Bofete	65,46	64,89	64,3	63,76	63,76	63,75	63,76	63,76	63,75	63,76		
Boituva	93,25	93,47	93,74	94,07	94,07	94,07	94,07	94,07	94,07	94,07		
Botucatu	95,86	95,97	96,13	96,35	96,38	96,41	96,44	96,47	96,5	96,53		
Cabreúva	82,12	83	83,87	84,75	85,32	85,88	86,41	86,92	87,41	87,88		
Capela do Alto	80,23	81,05	81,94	82,83	83,26	83,69	84,09	84,5	84,89	85,28		
Cerquilho	94,11	94,32	94,6	94,83	94,83	94,83	94,83	94,83	94,83	94,83		
Cesário Lange	67,66	67,63	67,57	67,52	67,51	67,52	67,51	67,52	67,52	67,52		
Conchas	79,22	79,77	80,41	81,02	81,5	81,97	82,43	82,88	83,32	83,75		
Ibiúna	34,11	34,37	34,67	35,01	35,2	35,38	35,57	35,76	35,95	36,14		
Iperó	63,89	63,12	62,42	61,71	61,71	61,71	61,71	61,71	61,7	61,71		
Itu	92,6	92,93	93,29	93,59	93,76	93,93	94,09	94,25	94,4	94,55		
Jumirim	54,99	55,92	56,99	58,02	58,82	59,61	60,39	61,19	61,98	62,76		
Laranjal Paulista	88,66	88,97	89,29	89,55	89,65	89,76	89,86	89,97	90,07	90,17		

Mairinque	81,68	81,14	80,68	80,26	80,26	80,26	80,26	80,26	80,26	80,26
Pereiras	66,96	66,87	66,82	66,79	66,78	66,79	66,78	66,79	66,78	66,78
Piedade	44,9	45,13	45,37	45,57	45,72	45,88	46,04	46,2	46,35	46,51
Porangaba	48,79	48,55	48,44	48,28	48,28	48,28	48,28	48,28	48,29	48,28
Porto feliz	82,66	83,12	83,59	84,05	84,38	84,71	85,02	85,33	85,64	85,94
Quadra	25,49	25,56	25,59	25,6	25,61	25,65	25,69	25,71	25,73	25,78
Salto	98,85	99,02	99,19	99,3	99,3	99,3	99,3	99,3	99,3	99,3
Salto de Pirapora	77,87	78,05	78,31	78,4	78,43	78,46	78,49	78,53	78,56	78,59
São Manuel	95,72	96,37	97,02	97,58	97,77	97,93	98,07	98,2	98,3	98,4
São Roque	84,38	86,43	88,54	90,7	91,67	92,53	93,3	93,99	94,59	95,12
Sarapuí	70,3	71,43	72,57	73,62	74,38	75,1	75,82	76,52	77,21	77,88
Sorocaba	98,53	98,66	98,84	98,98	98,98	98,98	98,98	98,98	98,98	98,98
Tatuí	93,74	94,28	94,81	95,28	95,53	95,76	95,98	96,18	96,37	96,55
Tietê	90,4	90,55	90,72	90,92	90,96	91,01	91,05	91,1	91,15	91,19
Torre de Pedra	62,8	63,35	64,1	65,16	65,8	66,42	67,05	67,66	68,24	68,86
Vargem Grande Paulista	100	100	100	100	100	100	100	100	100	100
Votorantim	95,82	95,91	96,06	96,19	96,19	96,19	96,19	96,19	96,19	96,19

Fonte: Adaptado SEADE – informações dos municípios paulistas (IMP)

4.2. CARACTERIZAÇÃO FÍSICA DA UGRHI

4.2.1 Geomorfologia

A área da UGRHI 10 está inserida em região composta de rochas com idades que variam do Pré-Cambriano ao Cenozoico. Em seus limites são encontradas as seguintes unidades estratigráficas: Embasamento Cristalino, Grupo Tubarão (Formações Itararé e Tatuí), Grupo Passa Dois (Formações Irati e Corumbataí), Grupo São Bento (Formações Piramboia, Botucatu e Serra Geral), Grupo Bauru (Formação Marília) e Sedimentos Cenozoicos.

A estrutura regional caracteriza-se por um homoclinal, mostrando uma deflexão na direção Leste-Oeste, com mergulho suave de 1,5º para o Paranapanema. Na região do Médio Tietê, o homoclinal encontra-se orientado, aproximadamente norte-sul com mergulhos inferiores a 2º para oeste-noroeste, atingindo, localmente, valores relativamente altos, em decorrência do tectonismo associados aos derrames basálticos e a intrusão de *sills* de diabásio.

De forma geral, o comportamento das camadas, tanto em espessura quanto em mergulho, apresenta-se bastante uniforme, quando não sofre perturbações teutônicas consequentes de intrusões do tipo *sill* ou dique. Verificou-se que a Formação Botucatu tende a desaparecer sob os derrames basálticos na parte ocidental da região, onde a Formação Piramboia assenta discordantemente sob a Formação Serra geral.

Na área do Médio Tietê, próximo as cidades de Salto e Itu, destaca-se um feixe de fraturas coextensivo com os falhamentos transcorrentes de Jacutinga.

A alcalina de Ipanema ocorre injetada nos sedimentos do Subgrupo Itararé que sofreram urna diminuição de espessura e ficaram marcados por urna série de falhas anelares. Na região de Anhembi, existe um alto estrutural delimitado por falhas de direção NW-SE e NE-SW. Na região de Porangaba, foi identificado um pequeno *horse* expondo os folhelhos da formação Irati dentro dos sedimentos da Formação Corumbataí.

4.1.1.1 Embasamento Cristalino

Os afloramentos de Embasamento Cristalino ocupam as porções leste e sudeste da área de estudo. Na região da bacia ocorrem três unidades principais cristalinas Pré-Cambrianas:

- A) Complexo metamórfico supracrustal de baixo grau metamórfico (facies xisto verde), constituído por metassedimentos (metarritmito, metassiltito, metarenito, metargilito e uma pequena ocorrência de mármore impuro) representados pelos Grupos Açungui e São Roque. Nos arredores do município de Alumínio, metavulcanicas básicas podem ser de natureza infracrustal;
- B) Complexo metamórfico supra e infracrustal de médio e alto grau metamórfico, constituído de xistos, gnaisses, anatexitos e migmatitos distintos, essencialmente das facies arifibólito. Essas rochas foram submetidas a múltiplos eventos deformacionais e metamórficos;
- C) Complexos granitóides de composições diorítica e granítica cortam o complexo de baixo, como o de médio e alto grau metamórfico. As estruturas tectônicas mais expressivas incidentes na área do cristalino são as falhas de Taxaquara e Pirapora, ambas de direção nordeste.

4.2.1.2. Grupo Tubarão

Também designado como Supergrupo Tubarão, pode ser dividido em dois principais ciclos: o inferior glacial representado pelo Subgrupo Itararé e o superior pósglacial conhecido como Formação Tatuí.

A) Subgrupo Itararé:

Constituído por sedimentos do Carbonífero Superior até o Permiano Médio, estes assentam-se em discordância sobre os arenitos Devonianos da Formação Fumas ou diretamente sobre o Embasamento Cristalino. É composto predominantemente de arenitos finos a grosseiros, lamitos e diamictitos nas partes superior e inferior, enquanto a parte média é constituída por arenitos finos, siltitos e

lamitos. Em suma, os arenitos são feldspáticos ou arcosianos e formam corpos

psamíticos com estruturas sedimentares singenéticas como marcas onduladas,

marcas de sola, estratificação cruzada, gradacional, além de estruturas decorrentes

de deformações plásticas penecontemporâneas a deposição.

Representaria uma sequência sedimentar depositada num ambiente marinho

ou flúvio-lacustre durante um ciclo glacial. Em âmbito litológico, apresenta-se como

ciclos e mostra rápida mudança de fácies lateralmente; constitui a maior parte da

região de estudo.

B) Formação Tatuí:

Assentada em discordância sobre o subgrupo Itararé, marca o início do ciclo

Pós-Glacial no Permiano Superior. A Formação corresponde a uma transgressão

marinha, sendo composta no membro inferior por siltitos e arenitos muito finos de cor

marrom avermelhada e no membro superior representada por siltitos de cores claras,

amarelas e esverdeadas, intercalando corpos acanalados de arenitos. Aflora numa

faixa continua em arco desde o município de Taquarituba até Laranjal Paulista.

4.2.1.3. Grupo Passa Dois

O Grupo Passa Dois é representado no Estado de São Paulo pelas Formações

Irati em sua base e Corumbataí no topo. A formação conhecida como Rio do Rastro

pertence a este Grupo, porém não aflora no Estado.

A) Formação Irati:

Subdivide-se em dois principais membros: o membro inferior ou Taquaral,

constituído por siltitos e folhelhos com espessura da ordem de 10 metros e; o membro

superior ou Assistência, representado por folhelhos pretos, calcários dolomíticos e

siltitos com espessura de cerca de 30 metros. A referida Formação aflora numa faixa

sobre os sedimentos da Formação Tatuí, tendo uma extensão de até 25 Km na região

das cidades de Cesário Lange, Quadra e Tatuí. Apresenta, em média, uma espessura

de 35 Km.

B) Formação Corumbataí

É constituído por arenitos muito finos, siltitos, lamitos e folhelhos com níveis de calcário oolíticos. Os siltitos e os folhelhos apresentam uma laminação paralela, estruturas "flazer" além de fendas de ressecamento, enquanto os arenitos possuem estratificações cruzadas de pequeno porte e marcas onduladas. O Piramboia, um importante afloramento presente no meio da Formação, na região de Anhembi, onde a mesma se encontra exposta em consequência de um *horst* bem evidenciado pela grande quantidade de falhas adjacentes.

4.2.1.4. Grupo São Bento

Iniciando o Mesozoico, o Grupo São Bento envolve a sequência pré-vulcânica caracterizada por um pacote de arenitos fluviais e eólicos, predominantemente vermelhos, correspondendo ás Formações Piramboia e Botucatu, e uma sequência vulcânica representada pelos derrames basálticos da formação Serra Geral e diabásios intrusivos.

A) Formação Piramboia

Em função das características texturais e estruturais, a formação Piramboia foi dividida em dois membros. O membro inferior, com características das facies mais argilosa e predominância de estratificação plano-paralela e cruzada acanalada de pequeno porte. O membro superior é caracterizado pela disposição dos bancos de arenitos, pouco a muito argilosos, com estratificação plano paralela, lamitos, argilitos arenosos, numa clara repetição cíclica. Os arenitos apresentam granulação homogênea (variando entre muito fina à média), predominando areia fina.

Os sedimentos dessa formação assentam-se em discordância erosiva sobre os da formação Corumbataí e são capeados pelos arenitos eólicos da formação Botucatu ou os derrames basálticos da Formação Serra Geral, a oeste dessa região. Esses sedimentos são de ambiente continental em planícies aluviais de rios meandrantes. Aflora no Estado de São Paulo numa faixa que chega a até 50 Km, cobrindo uma área que vai da divisa do Estado do Paraná até o Estado de Minas Gerais, e se estreita para 5 Km na área do Morro do Bufete - Torre de Pedra.

B) Formação Botucatu

É representada por um pacote de arenitos de granulação fina e muito fina, com

estratificação cruzada de grande a médio porte, muito friáveis ou silicificados,

contendo em sua parte basal corpos de arenitos conglomeráticos e conglomerado. No

topo da Formação ocorre uma interdigitação dos sedimentos com os derrames

basálticos.

Baseados na idade conhecida da formação Serra Geral, correspondente ao

Jurássico Superior e Cretáceo Inferior, estima-se uma idade entre o Jurássico Médio

e o Cretáceo Inferior para os arenitos Botucatu.

Na Serra de Botucatu, os arenitos eólicos afloram numa faixa estreita e

contínua em forma de escarpa, sotoposto aos derrames basálticos. Também pode ser

verificada a presença de pequenos afloramentos isolados na região de Bufete e

Angatuba, correspondendo a vestígios de arenitos silicificados preservados da erosão

por uma camada basáltica.

C) Formação Serra Geral (rochas extrusivas)

Caracteriza-se por espessos derrames de lava basáltica, toleítica, de textura

afanítica, amigdaloidal no topo dos derrames e com desenvolvimento de juntas

verticais e horizontais.

O contato inferior da Formação aparece em desacordo com os arenitos eólicos

da Formação Botucatu, os quais podem encontrar-se interdigitados nos primeiros

derrames. Na região, aflora nas escarpas da Serra de Botucatu, porém, de forma

isolada devido à processos de erosão.

Os derrames basálticos são diretamente discordantes sobre os arenitos da

Formação Botucatu, exceto na parte do rio Paranapanema onde jazem em

discordância sobre os arenitos da Formação Piramboia. Na área, a formação

encontra-se recoberta esporadicamente em discordância erosiva pelos arenitos da

Formação Marília ou pelos sedimentos Cenozoicos.

4.2.1.5. Grupo Bauru

Iniciando a sequência pós-vulcânica, no período Cretáceo, depositaram-se os

arenitos do Grupo Bauru em discordância sobre os derrames basálticos. O Grupo é

composto pelas Formações Caiuá, Santo Anastácio, Adamantina e Marília. No

entanto, considerando a área em estudo, pode ser verificada apenas a existência dos

sedimentos da Formação Marília, no extremo oeste da região. A Formação é

composta por arenitos grosseiros conglomeráticos, com grãos ondulosos, seleção

pobre, maciços ou imaturos, raramente com estratificação cruzada de médio porte,

com seixos concentrados nos estratos cruzados.

A Formação descrita assenta-se em discordância erosiva sobre os derrames

basálticos da Formação Serra Geral e encontra-se capeada pelos sedimentos

Cenozoicos. Correspondendo ao membro superior do Grupo Bauru, foi-lhe atribuída

urna idade Cretáceo Superior entre o Santoniano e o Maestrichtiano. As suas

caraterísticas sugerem uma sedimentação em ambiente fluvial por correntes de alta

energia com deposição rápida sob um clima árido. Na região a Formação aflora numa

restrita zona que ocorre entre as cidades de Pratânia, Botucatu e Pardinho.

4.2.1.6. Sedimentos Cenozoicos

São geralmente constituídos por dois estágios: O inferior, aluvial, arenoso com

um conglomerado na base e espessura de 20 a 40 metros, com estratificação paralela

ou cruzada, estrutura de corte e preenchimento e lentes de argila e; O superior,

coluvial, menos espesso, mais extenso e sem estrutura. Atribui-se uma idade entre

Paleoceno e Oligoceno a esses sedimentos.

4.2.2. ÁGUAS SUPERFICIAIS

A UGRHI 10, que corresponde a uma área de drenagem de 11.829km², onde

apresenta como seus rios e principais mananciais de grande porte de interesse

regional, os Rios Sorocaba, que percorre 28 municípios dentro da bacia, e o Tietê que

cruza o Estado de São Paulo por quase toda sua extensão. Além disso, existem outros

mananciais principais distribuídos ao longo das 6 sub-bacias. São eles: O rio

Sorocabuçu e Sorocamirim (formadores do rio Sorocaba), Pirajibu, Jundiuvira,

Murundu, Sarapuí, Tatuí, Guarapó, Macacos, Ribeirão do Peixe, Alambari, Capivara

e Araqua.

Outros importantes mananciais da UGRHI são os reservatórios de Itupararanga

e de Barra Bonita, situados, respectivamente, nas sub-bacias do Alto Sorocaba e

Médio Tietê Inferior.

4.2.3. ÁGUAS SUBTERRÂNEAS

Os reservatórios de água subterrânea, também denominados aquíferos, que

ocorrem na UGRHI 10 foram caracterizados em função de sua distribuição espacial,

parâmetros hidráulicos, modo de circulação da água e condições de armazenamento.

Sendo assim, foram identificados os seguintes sistemas de aquíferos para a Bacia do

Sorocaba e Médio Tietê:

Sistema Aquífero Cristalino

Sistema Aquífero Tubarão

Sistema Aquífero Botucatu

Sistema Aquífero Basalto

Aquitardo Passa Dois

Aquífero Marília

Em cada um destes sistemas, o armazenamento e a circulação da água

ocorrem de modo específico, no entanto, é possível agrupá-los de acordo com suas

características litológicas principais: meios de porosidade predominante granular

(Tubarão, Botucatu e Marília), meios de porosidade de fissuras (Cristalino e Basalto)

e porosidade mista, granular e por fissuras (Passa Dois). O Grupo Passa Dois, devido

a sua constituição litológica, assume regionalmente o comportamento de um

aquiclude (armazena, porém sem capacidade de fornecer água) podendo, entretanto,

apresentar localmente zonas aquíferas (boa produção de água) representadas principalmente pelos bancos de bancos de calcário e por zonas de rochas lamíticas fissuradas.

A Figura 03 ilustra as potencialidades e a Tabela 09 mostram a distribuição, características e condições de ocorrência dos sistemas aquíferos na Bacia do Sorocaba-Tietê.

Tabela 9 - Distribuição, Características e condições de Ocorrência dos Sistemas Aquíferos

Sistemas	Litologia	Características Hidrogeológicas	Área	Espess.	Extensão	Espes	Vazão por		Capacid.	Produtiv.
Aqüíferos	Predominante		Aflora	Média	Subsuperf.		Poço	Poços	Específ.	
			$\frac{m}{.km^2}$	m	km ²	fin. m	m³/h	m	m³/h/m	
Cristalino	Granitos, gnaísses, migmatitos, filitos, xistos, quartizitos e metassedimentos		53,400	150	190,400	-	5 a 120	150	0,001 a 7	Baixa a média
Tubarão	grosseiros com matriz	Extensão regional, granular (local.fissurado), livre e semi- confinado descontínuo	20,700	1,000	165.00	1,600	3 a 150	100 a 350	0,005 a 8.5	Média
Botucatu		Extensão regional, granular livre e confinado, homogêneo e contínuo	16,000	250	136,800 (confinado)	500	50 a 800 10 a 250	200 a 170 50 a 250	2 a 16 0,5 a 10	Média
Serra-Geral	Basaltos	Extensão regional, fraturado, caráter eventual livre e semi- confinado descontínuo	31,900	150	104,000		5 a 100	150	0,01 a 10	Média
Passa-Dois (aqüitardo)	Lamitos, siltitos arenosos, ritmitos. folhelhos e calcáreos	Extensão limitada, fissurado, caráter eventual livre heterogêneo, descontínuo	6,900	120	150,000	-	3 a 20	100 a 200	0,005 a 1	Baixa
Вашч	Arenitos mal selecio- nados. Muitos finos a conglomeráticos. Bancos lamíticos, siltitos e finas camadas calcáreos	Extensão regional, granular livre a semi-confinado. Heterogêneo contínuo		200			5 a 100	100 a 200	0,1 a 2	Média

Fonte: SigRH

Potencialidade de Agua Subterrânea -Produção por Poço-AQÜÍFEROS SEDIMENTARES Até 10 10 a 20 20 a 40 40 a 80 80 a 120 m³/h AQÜÍFEROS FRATURADOS 1 a 12 3 a 23 7 a 100 m³/h **AQÜICLUDE** OBSERVAÇÕES: AQUÍFERO - corpos ou camadas de materiais que armazenam água e permitem a sua circulação AQÜICLUDE - corpos ou camadas de materiais que mesmo armazenando água nos seus vazios, não permitem a sua circulação 13 26 km Fonte: DAEE/IG/IPT/CPRM (2005)

Figura 3 - Potencialidades de Água Subterrânea na UGRHI 10

Fonte: DAEE

A) Sistema Aquífero Cristalino

Este Sistema corresponde às rochas ígneas e metamórficas do embasamento cristalino Pré-Cambriano encontradas na área (Complexo gnáissico migmatítico, Grupo Açungui e faixas cataclásticas). O meio Aquífero Cristalino é desenvolvido nas descontinuidades provocadas pelo fraturamento das rochas (densidade das porosidades por fissura), caracterizando desta forma zonas aquíferas localizadas, com extensão e profundidades condicionadas pela intensidade dos esforços existentes. Dessa forma, a existência de uma camada de alteração destas rochas que apresenta grande influência na recarga do aquífero e, consequentemente no escoamento básico da rede de drenagem superficial.

Observa-se que o comportamento hidráulico de Cristalino está associado às condições de ocorrência de zonas aquíferas associadas ao fraturamento na rocha sã e ao manto de rocha alterada, sendo assim, caracterizado por um aquífero descontínuo e heterogêneo. A heterogeneidade e anisotropia ocorrem, também, devido ao contraste litológico entre a camada de alteração e a rocha sã, na bacia o aquífero é livre.

Quando a camada de alteração é grande (20–40m ou mais) desenvolve-se um meio aquífero com maior capacidade de armazenamento e de circulação devido ao intemperismo químico e físicos atuantes. Em geral, a água circula apenas pelas fraturas existentes, condicionado a circulação pela frequência de ocorrência das mesmas, pela sua abertura, extensão, rugosidade e principalmente pelas direções predominantes em que ocorrem.

Na análise da profundidade dos poços relativa à produtividade, observou-se que o intervalo de perfuração menor que 100m mostrou melhores valores de capacidade específica por metro perfurado do que os outros intervalos de 100 a 150m e > 150m.

Assim, projetos de perfuração de poços no Sistema Aquífero Cristalino devem considerar prioritariamente o conhecimento prévio da espessura de rocha alterada e semialterada, além do fraturamento (natureza, origem e traçado).

B) Sistema Aquífero Tubarão

A faixa aflorante do Aquífero Tubarão localiza-se no centro-sudeste do Estado entre os meridianos 46°50' e 49°40' W e os paralelos 21° e 24° S, ocupando uma área total de 20.700 km². Insere-se na Depressão Periférica Paulista, envolvendo parte das UGRHIs 4, 5, 9, 10 e 14 (DAEE/IG/IPT/CPRM, 2005). Situa-se no Grupo Tubarão, Subgrupo Itararé. Formação Tatuí e encontra-se cortado em diversos pontos por de intrusões de diabásio, que localmente interrompem sua continuidade, sendo ainda recoberto em áreas próximas aos lineamentos de drenagem por camadas de sedimentos Cenozoicos.

O armazenamento e circulação da água no Aquífero Tubarão ocorrem através dos interstícios dos sedimentos clásticos grosseiros (arenitos, conglomerados, diamictitos), que estão intercalados com camadas de sedimentos finos (lamintos,

siltitos, folhelhos) dificultando o escoamento da água subterrânea no sentido vertical caracterizando uma situação de anisotropia com permeabilidades verticais inferiores às horizontais. Há alternância em superfície de sedimentos grosseiros e finos com espessuras variadas, acentuando a heterogeneidade das propriedades deste Sistema aquífero.

No trecho situado na bacia este aquífero é livre (freático). Seu substrato é constituído por rochas Pré-Cambrianas do Aquífero Cristalino e, na medida em que avança para noroeste, passa a ser confinado pela ocorrência do Grupo Passa Dois, que por sua vez fica freático neste local.

Em âmbito regional, este aquífero comporta-se como um reservatório subterrâneo de produtividade limitada, contendo apenas algumas áreas com potenciais mais elevados. As análises da produtividade de poços em relação a profundidade indicou melhores valores de capacidade específica por metro perfurado em intervalos de profundidade menores de 100m, comparativamente aos de 100-150m e > 150m.

C) Sistema Aquífero Botucatu

O Sistema Aquífero Botucatu é constituído pelos arenitos fluviais e eólicos, respectivamente das Formações Piramboia e Botucatu, que afloram na parte norte da área em estudo, recobrindo os sedimentos do grupo Passa Dois. Para oeste, é recoberto pelos basaltos da Formação Serra Geral que passam a confiná-lo. De sua área total, no Estado de São Paulo, 90% apresenta-se confinada por esses derrames imprimindo um caráter de artesianismo em aproximadamente 80% do Sistema Aquífero.

Os valores observados da capacidade específica evidenciam um contraste entre as duas unidades geológicas que compõe este Sistema. Isto se deve a uma maior quantidade de matriz lamítica existente no Arenito Piramboia em relação ao Botucatu, o que o confere maior condutividade hidráulica. Portanto, o Botucatu deve apresentar maior capacidade específica em relação ao Piramboia. De modo geral, possui caráter de permeabilidade granular, livre e confinado, homogêneo, contínuo, sendo que a noroeste da bacia este aquífero apresenta-se livre (freático).

D) Sistema Aquífero Basalto

Este sistema é composto pela Formação Serra Geral do Grupo São Bento e aparece encoberto em sua maior parte por sedimentos Cenozoicos e pela formação Marília, aflorando em algumas áreas localizadas ao longo dos lineamentos de drenagem. As zonas aquíferas estão associadas principalmente aos sistemas de fraturamento existentes nos basaltos, portanto, sendo descontínuos e localizados, estando mascaradas nas áreas com cobertura sedimentar.

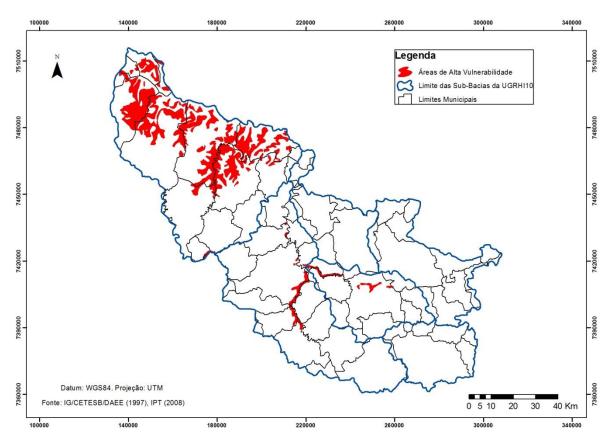
As propriedades hidráulicas dos basaltos estão relacionadas às condições de armazenamento e circulação de água que ocorrem nestas rochas, isto é, nas zonas de descontinuidade de origem primária (juntas do resfriamento), nos planos de separação dos derrames superpostos e preferencialmente nos locais de fraturamento resultante de esforços secundários (tectônicos). Logo, os basaltos apresentam-se como um meio aquífero fortemente heterogêneo, anisotrópico e descontínuo, sendo freático no extremo sudoeste da bacia.

E) Aquitardo Passa Dois

Este Aquitardo corresponde ao Grupo Passa Dois, sendo constituído pelas Formações Irati e Corumbataí, compondo-se basicamente de folhelhos, siltitos, calcáreos e alguns bancos de arenitos finos fortemente cimentados por carbonatos. O armazenamento de água deve-se tanto a porosidade granular como fissuras. As zonas aquíferas são dependentes da litologia e da situação estrutural local, podendo apresentar caráter livre, heterogêneo, descontínuo, localizando-se a noroeste na região da bacia.

Está posicionado sobre os sedimentos do grupo Tubarão e é recoberto em grande parte (regionalmente) pela Formação Piramboia. Por estar interposto entre os sistemas Aquíferos Botucatu e Tubarão, exerce regionalmente um papel que pode ser considerado passivo quanto à circulação das águas subterrâneas.

F) Aquífero Marília


De pequena extensão dentro da área de estudo, faz parte do Sistema Aquífero Bauru. De modo geral, apresenta-se livre e semi-confinado, heterogêneo, contínuo,

anisotrópico, granular. A ocorrência de arenitos grosseiros, com abundantes nódulos e cimento calcífero e bancos de arenitos finos intercalados com lamitos e siltitos, conferem ao aquífero baixos valores hidrodinâmicos, podendo inclusive ser considerado como Aquitardo.

4.2.3.1. Áreas Potencialmente Críticas para a Utilização de Águas Subterrâneas

Conforme o Mapa de áreas potencialmente críticas para uso da água subterrânea, elaborado por IG/CETESB/DAEE (1997), foram identificadas áreas de alta vulnerabilidade em Tatuí, Capela do Alto, Boituva, Iperó, Sorocaba, Cesário Lange, Laranjal Paulista, Poranga, Torre de Pedra, Quadra, Bofete, Conchas, Anhembi e Botucatu, totalizando em uma área de 982,8 km² ou correspondente a 8,2% da área da UGRHI 10.

Fonte: IG/CETESB/DAEE (1997) e IPT (2008)

Essas áreas mais vulneráveis estão concentradas na região do Baixo Sorocaba (897,4 km²), locais de afloramento do Sistema Aquífero Guarani na UGRHI 10. Já nas outras localizações isso ocorre devido à fragilidade natural do aquífero.

No Brasil mais de 50% da água utilizada para o abastecimento público provém das águas subterrâneas. Dos 646 municípios do Estado, 52% utilizam exclusivamente água subterrânea em seu abastecimento público, 19% utilizam sistema misto, ou seja, parte água subterrânea e parte superficial, e o restante, 29%, utilizam exclusivamente água superficial (DAEE, 2013).

Visando fixar orientações para a proteção dos mananciais, estabelecer ações técnicas e políticas para controlar as atividades potencialmente poluidoras, a Secretaria do Estado do Meio Ambiente elaborou o Plano de Desenvolvimento e Proteção Ambiental (PDPA) para o Sistema Aquífero Guarani (SMA, 2011). Esse conjunto de diretrizes tem como base o uso sustentável dos recursos naturais, neste caso, as águas subterrâneas no Estado de São Paulo.

O Aquífero Guarani é um dos maiores reservatórios de água subterrânea do mundo. Devido às características sedimentares, das formações geológicas que constituem o Sistema do Aquífero Guarani (SAG), há uma grande capacidade de armazenamento e fornecimento de água (ROCHA 1997). As áreas de afloramento deste aquífero são consideradas as mais vulneráveis a contaminação. Existem locais cujo relevo é classificado como plano e suavemente ondulado, com declividades abaixo de 8%, e são sustentados por solos arenosos, muito friáveis, permeáveis e de baixa capacidade para reter possíveis poluentes.

Conforme o PDPA para o Sistema do Aquífero Guarani (SMA, 2011) a Lei Estadual nº 9.866/97, denominada "Nova Lei de Mananciais", tem como objetivo a gestão dos mananciais no Estado de São Paulo e a criação de Áreas de Proteção e Recuperação de Mananciais (APRMs). Para cada uma das APRMs deverá ser elaborada uma lei específica que regulamentará a sua criação e norteará a sua ocupação. São instrumentos de gestão para a ordenação e ocupação do solo nas APRMs: Leis específicas para cada APRM; Plano de Desenvolvimento e Proteção Ambiental para cada APRM; Elaboração de mecanismos para compensação, fiscalização, monitoramento e aplicação de penalidades.

O PDPA tem como proposta a criação da Área de Proteção e Recuperação de Mananciais (APRM) da região denominada hidrogeologicamente de zona de afloramento do Sistema Aquífero Guarani (SAG). Na proposta foi acrescentado um buffer de 2,0km de largura ao longo de todo o perímetro da região, na escala cartográfica 1:250.000. A proposta desta APRM-SAG (Figura 05) abrangeria praticamente 80% a área do Médio Tietê Inferior ou 3.306km², mas sua extensão abrange parcialmente as áreas de outras 8 UGRHIs (Tabela 10).

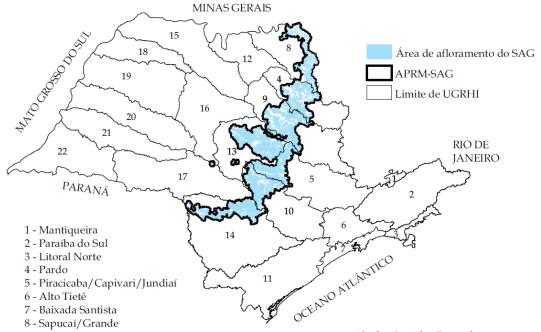


Figura 5 - Limite da APRM-SAG no Estado de São Paulo.

4 - Pardo 5 - Piracicaba/Capivari/Jundiaí 6 - Alto Tietê 7 - Baixada Santista 8 - Sapucaí/Grande

9 - Mogi-Guaçu 10 - Tietê/Sorocaba

11 - Ribeira de Iguape/Litoral Sul 15 - Turvo/Grande 12 - Baixo Pardo/Grande

13 - Tietê/Jacaré

14 - Alto Paranapanema

16 - Tietê/Batalha

17 - Médio/Paranapanema

18 - São José dos Dourados

19 - Baixo Tietê 20 - Aguapeí

21 - Peixe

22 - Pontal do Paranapanema

Fonte: SMA 2013

Tabela 10 - Distribuição da área da APRM-SAG em relação as UGRHI.

UGRHI	Área Total da UGRHI (km²)*	Área da UGRHI na APRM-SAG (km²)*	% da UGRHI na APRM-SAG*
04 - Pardo	8.976	3.500	39,0
05 - Piracicaba / Capivari / Jundiaí	14.141	2.984	21,1
08 - Sapucaí/Grande	9.175	3.376	36,8
09 - Mogi-Guaçu	15.025	4.484	29,8
10 - Tietê/Sorocaba	11.916	3.306	27,7
13 - Tietê / Jacaré	11.804	4.681	39,7
14 - Alto Paranapanema	22.774	3.688	16,2
16 - Tietê / Batalha	13.178	18	0,1
17 - Médio Paranapanema	16.808	18	0,4

* valores aproximados

Fonte: SMA 2013

A proposta da APRM visa a proteção de um aquífero e, portanto, não leva em consideração os limites territoriais dos municípios (total de 109) ou de UGRHIs (total de 9), trata-se de uma outra abordagem de planejamento territorial e deve-se, no entanto, observar as seguintes considerações sobre a implantação de Leis Específicas (SMA, 2011):

- a APRM-SAG é extensa e possui regiões muito distintas entre si;
- a APRM-SAG objetiva a proteção de um manancial subterrâneo;
- a proteção de um aquífero depende das diferentes formas de uso e ocupação do solo que ocorrem na superfície do terreno;
- existe a necessidade de aprimoramento dos mecanismos básicos de decisão integrada, entre as esferas política, técnica e administrativa;
- existe, ainda, o desafio de articular as ações no âmbito regional, de responsabilidade do Estado e dos Comitês de Bacia Hidrográfica, e as ações de âmbito local, de responsabilidade dos municípios.

Tabela 11 - Lista dos municípios pertencentes a APRM-SAG.

MUNICÍPIO	%	MUNICÍPIO	%
Águas de São Pedro	100	Leme	16
Altinópolis	100	Luís Antônio	93
Américo Brasiliense	73	Macatuba	21
Analândia	100	Mineiros do Tietê	51
Angatuba	59	Mococa*	6
Anhembi	100	Motuca	17
Aramina	14	Nova Europa	22
Arandu*	2	Paranapanema	37
Araraquara	45	Pardinho	62
Araras*	2	Patrocínio Paulista	100
Avaré	17	Pedemeiras*	3
Bariri	41	Pedregulho	73
Barra Bonita	17	Pereiras*	1
Batatais	19	Piracicaba	68
Boa Esperança do Sul	95	Pirajú	26
Bocaina	86	Pirassununga	22
Bofete	100	Piratininga	20
Botucatu	50	Porangaba	24
Brodowski	57	Porto Ferreira*	2
Brotas	90	Ouadra	11
Buritizal	60	Restinga	18
Cajuru	89	Ribeirão Bonito	100
Casa Branca*	2	Ribeirão Preto	36
Cássia dos Coqueiros	100	Rifaina	100
			100
Charqueada Conchas	71 83	Rincão Rio Claro	
	98		31 15
Corumbataí		Rio das Pedras	
Cravinhos	56	Saltinho	66
Cristais Paulista	60	Santa Cruz da Conceição	73
Descalvado	97	Santa Cruz da Esperança	100
Dois Córregos	52	Santa Cruz das Palmeiras	15
Dourado	100	Santa Lúcia	81
Fartura	32	Santa Maria da Serra	100
Franca	57	Santa Rita do Passa Quatro	98
Gavião Peixoto	29	Santa Rosa de Viterbo	86
Guareí	57	Santo Antônio da Alegria	100
Guatapará	55	São Carlos	88
Ibaté	79	São Manuel	41
Ibitinga	24	São Pedro	89
Igaraçu do Tietê*	5	São Simão	100
Igarapava	63	Sarutaiá	52
Ipaussu*	2	Serra Azul	100
Ipeúna	68	Serrana	100
Itaí	35	Tabatinga	11
Itaju	43	Taguaí	13
Itatinga	62	Tambaú	51
Itirapina	95	Taquarituba	13
Itirapuã	100	Tejupá	100
Ituverava*	1	Tietê*	2
Jardinópolis	9	Timburi	71
Jaú	11	Torre de Pedra	100
Laranjal Paulista	22	Torrinha	41
* Municípios que apresentam, na área da APRM SAG,		Trabiju	100

no bastante reduzidas (menor do que 8%), e localizadas na região rural.

Fonte: SMA 2013.

A Secretaria de Estado de Saneamento e Recursos Hídricos elaborou um anteprojeto de Lei Específica para a criação da APRM-SAG, mas não foi aprovada e enviada para análise da câmara dos deputados estaduais, fazendo com que ainda não exista uma legislação específica sobre o tema.

Na publicação "Águas Subterrâneas no Estado de São Paulo: Diretrizes de Utilização e Proteção" foram identificadas regiões cuja intensidade de uso e qualidade das águas subterrâneas devem ter orientações específicas de gestão e uso racional. Foram identificadas 23 regiões que englobam 82 municípios. Na UGRHI 10 foram listados os seguintes municípios: Itu e Sorocaba (Figura 06). E as Sub-Bacias com estresse-hídrico são: Alto-Sorocaba, Médio Sorocaba, Baixo-Sorocaba, Médio-Tietê-Superior e Médio-Tietê-Médio.

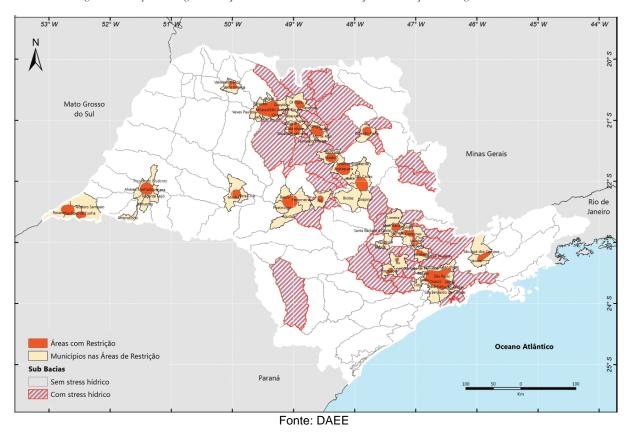


Figura 6 - Mapa de Regionalização de Diretrizes de Utilização e Proteção das Águas Subterrâneas

Segue abaixo as diretrizes a serem seguidas para as áreas com e sem restrição:

Áreas sem restrição

- Implantar programa de capacitação técnica dos órgãos municipais e estaduais relacionados à produção e distribuição de água, gestão ambiental e planejamento;
- Promover campanhas de educação ambiental;
- Cadastrar, controlar e fiscalizar as captações e outorgas de uso da água subterrânea:
- Consolidar a participação dos municípios na gestão dos recursos hídricos e promover articulações com os órgãos gestores estaduais e os comitês de bacias;
- Implantar rede de monitoramento de nível de água e de parâmetros indicadores de qualidade;
- Elaborar planejamento do uso da água subterrânea a curto e longo prazo.

Áreas com restrição

- Proteger as captações de águas subterrâneas;
- Adequar o zoneamento municipal e o Plano Diretor, visando à proteção dos poços e aquíferos importantes ao abastecimento público;
- Implantar programa de capacitação técnica dos órgãos municipais e estaduais relacionados à produção e distribuição de água, gestão ambiental e planejamento;
- Promover campanhas de educação ambiental;
- Cadastrar, controlar e fiscalizar as captações e outorgas de uso da água subterrânea;
- Consolidar a participação dos municípios na gestão dos recursos hídricos e promover a suas articulações com os órgãos gestores estaduais e os comitês de bacias;

40

 Implantar rede de monitoramento de nível de água e de parâmetros indicadores de qualidade;

Elaborar planejamento do uso da água subterrânea a curto e longo prazo.

Segundo o DAEE (2013) outra medida importante a ser aplicada nas áreas com restrição consiste na proteção das captações de águas subterrâneas destinadas ao abastecimento público. Primeiro, estabelece-se um perímetro de proteção abrangendo um raio de 10 (dez) metros, a partir do ponto de captação, cercado e protegido com telas e, além disso, deve-se instituir um Perímetro de Alerta contra poluição, tomando-se por base uma distância coaxial ao sentido do fluxo, a partir do ponto de captação, equivalente ao tempo de trânsito de cinquenta dias de água no aquífero.

4.3. DISPONIBILIDADE DE RECURSOS HÍDRICOS

A disponibilidade de água em rios, lagos e aquíferos está sujeita a diversos aspectos relacionados ao clima, relevo e geologia da região. Em linhas gerais, é possível afirmar que a disponibilidade hídrica se encontra ligada às condições naturais da Bacia, à sazonalidade e vazão natural dos cursos d´água. Porém, deve-se ressaltar que esses fatores estão atrelados, sobretudo, ás atividades antrópicas, pois estas alteram de forma definitiva as condições de uso e ocupação do solo e afetam diretamente as condições do escoamento superficial, dentro das áreas de drenagem da bacia.

É importante ressaltar que ela deve também atender, segundo consta na legislação vigente, aos usos múltiplos da bacia, que responder, principalmente, pelo abastecimento público e das indústrias, criação de animais, conservação dos ecossistemas, diluição de águas residuais, navegação, a irrigação de áreas agrícolas, a aquicultura, uso para geração de energia elétrica, lazer, entre outros.

Portanto, os períodos críticos em termos de disponibilidade hídrica, como o ocorrido em todo o Estado no ano de 2014, por exemplo, devem ser cuidadosamente avaliados, a fim de garantir um pleno desenvolvimento das atividades de planejamento e gestão.

41

A Figura 07 apresenta a Disponibilidade per capita de água superficiais - Qmédio em relação à população total: m³/hab.ano da UGRHI-10.

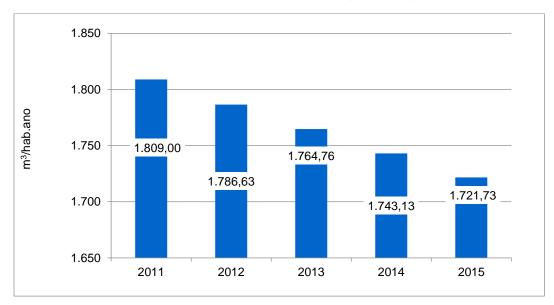


Figura 7 - Disponibilidade per capita de águas superficiais- Qmédio em relação à população total: m³/hab.ano

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

A disponibilidade per capita de águas superficiais da UGRHI 10 (1721,73 m³/ hab.ano) aparece entre as menores do estado, sendo superior apenas as duas bacias mais industrializadas do Estado, a Bacia do PCJ e Bacia do Alto Tietê. Apesar de a taxa geométrica de crescimento anual apresentar uma redução de 0,24% a.a. no último quadriênio (2010-2014), o parâmetro apresenta uma queda constante no decorrer dos últimos anos, devido, uma vez que quanto maior a população da bacia, menor será a quantidade de água disponível. Segundo a ONU, um valor abaixo de 1700 m³/hab.ano caracteriza uma situação de estresse hídrico e, considerando o Qmédio, a Bacia Hidrográfica do Sorocaba e Médio Tietê vem se aproximando de forma inevitável para este ultrapassar este limite.

A Figura 08 apresenta a Disponibilidade per capita de águas subterrâneas - Qmédio em relação à população total: m³/hab.ano da UGRHI-10.

290,92 283,86 250 287,37 280,38 276,95 200 2010 2011 2012 2013 2014

Figura 8- Disponibilidade per capita de águas subterrâneas - Qmédio em relação à população total: m³/hab.ano

Com relação à disponibilidade de águas subterrâneas, esta apresenta uma grande correlação com as águas superficiais, fazendo parte do ciclo hidrológico, uma vez que a disponibilidade nos aquíferos está ligada diretamente com a capacidade de escoamento das áreas de drenagem em suas áreas de ocorrência. Sendo assim, pode-se considerar que as águas disponíveis em aquíferos aparecem de forma relativamente limitadas quando considerados os seus verdadeiros volumes ou reservas explotáveis de água.

Os dados disponíveis, com relação à Disponibilidade per capita de águas subterrâneas demonstram uma contínua queda na quantidade estimada, o que pode vir a ser preocupante, especialmente em municípios com histórico de pouca disponibilidade hídrica em áreas subterrâneas, como Sorocaba e Itu.

4.4. DEMANDA POR RECURSOS HÍDRICOS

4.4.1. DEMANDA GLOBAL

A Figura 09 mostra que nos últimos anos a Demanda Total de água na UGRHI-10 manteve-se relativamente estável. Este parâmetro pode ter sido atenuado pela suave queda da taxa de crescimento populacional (0,24% a.a.). Para o período considerado (2010-2015), foi registrada uma demanda total de 11,12 m³/s em 2010 e 11,58 m³/s em 2015.

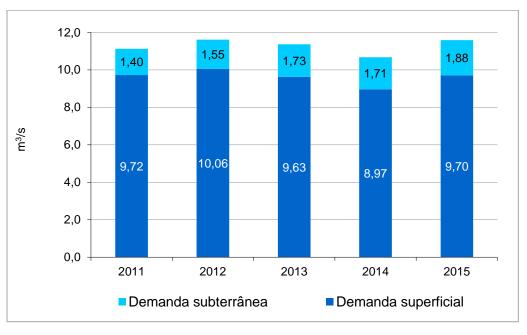


Figura 9- Demanda de água superficial e subterrânea em m3/s

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

Como pode ser observado na Figura 10, a vazão outorgada na bacia segue o mesmo padrão da demanda total, apresentando valores que inclusive decaíram ao longo dos últimos anos, como é o caso da vazão superficial outorgada, que passou de 9,67 m³/s em 2010 para 8,97 m³/s no ano de 2014.

12,00 10,06 9.72 9.67 9.63 10,00 8,97 8,00 m /s 6,00 4,00 1,73 1,71 1,55 1,40 2,00 0,00 -2010 2011 2012 2013 2014 Subterrânea Superficial

Figura 10 - Vazão total outorgada para captações superficiais e subterrâneas em m3/s

O aumento gradual da demanda subterrânea, juntamente com as outorgas na bacia se tornou uma tendência nos últimos anos, levando a um fator que pode se tornar um complicador em longo prazo, devido à possibilidade de redução de sua disponibilidade.

4.4.2. PONTOS DE CAPTAÇÃO SUPERFICIAL E SUBTERRÂNEA

Conforme é percebido na Figura 11, o número de outorgas por 1000 km² na UGRHI-10, considerando o período de 2010 a 2014, aumentaram tanto nas captações de águas superficiais e quanto nas subterrâneas, com maior destaque para o número de captações subterrâneas que subiu de 88,8, em 2010, para 108,2 no ano de 2014.

120 108,5 108,2 100,4 93.0 100 8,88 nº de outorgas/1000 km² 80 58,3 57,5 54,3 60 49,5 48,5 40 20 0 2010 2011 2012 2013 2014

Figura 11 - Captação superficial e subterrânea em relação à área total da bacia: nº de outorgas/ 1000 km2

--- Captações subterrâneas

Captações superficiais

A Figura 12 exibe a proporção de captações superficiais e subterrâneas outorgadas em relação ao total da bacia, que também não apresenta variações significativas nos últimos anos.

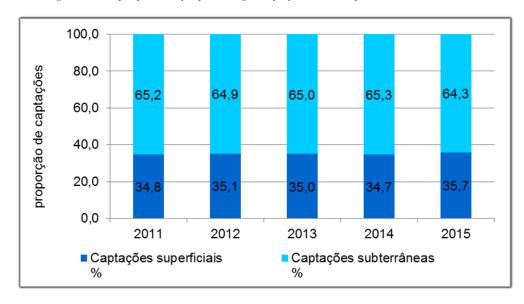


Figura 12- Proporção de captações de água superficial em relação ao total: %

46

4.4.3. DEMANDAS POR TIPO DE USO DA ÁGUA

Em relação aos diferentes tipos de usos da água, estes se dividem em dois

tipos principais: Os consuntivos e os não consuntivos. Pode-se denominar como uso

consultivo, toda e qualquer atividade humana que, de alguma forma, altere as

condições naturais das águas superficiais ou subterrâneas, através da derivação, ou

retirada, de água de sua fonte natural diminuindo, dessa forma, suas disponibilidades.

Já os usos não consuntivos referem-se àqueles usos que acabam por retornar

à fonte de suprimento, praticamente a totalidade da água utilizada, podendo haver

apenas alguma modificação temporária no seu padrão de disponibilidade quantitativa.

4.4.3.1. Consuntivos

Para a caracterização e levantamento dos usos consuntivos da água no Estado

de São Paulo, se faz necessária a manutenção de um cadastro atualizado permanente

dos seus diversos tipos de usuários. Estes cadastros são de responsabilidade dos

órgãos oficiais do Estado, porém, ficando quase que totalmente a cargo do

Departamento de Água e Energia Elétrica – DAEE.

Na UGRHI 10, as principais utilizações dos recursos hídricos para fins

consuntivos são: urbano, industrial, de irrigação e o uso rural.

Considerando o horizonte dos últimos 5 anos (Figura 13), a demanda para uso

urbano da bacia, quarta maior dentre as UGRHIs, cresceu 1,3 m³/s, em detrimento do

uso rural e industrial que apresentaram redução de 0,22 e m³/s e 0,67 m³/s,

respectivamente.

47

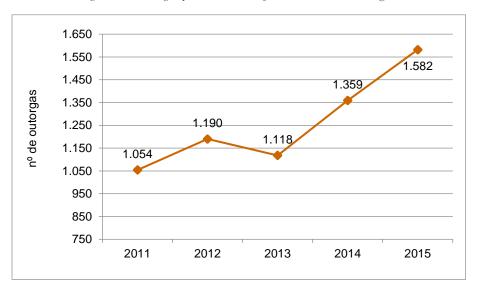
0,16 0,18 12,0 0,16 0,14 0,15 2,20 2,08 10,0 2,26 2,30 1,51 2,48 8,0 2,98 2,55 2,75 3,15 m^3/s 6,0 4,0 6,84 6,45 6,28 6,19 5.54 2,0 0,0 2011 2012 2013 2014 2015 ■ Outros Usos ■ Uso Rural Uso Industrial ■ Uso Urbano

Figura 13– Demanda de água por tipos de uso da água na bacia em m³/s

Como observado na Figura 13, o uso que mais consome água é o urbano, devido muito ao alto grau de urbanização da bacia, quando comparado com as outras UGRHIs do Estado. O uso industrial e rural também se mostram importantes consumidores dos recursos hídricos da bacia, ainda que venha ocorrendo sua diminuição devido ao aumento dos usos em áreas urbanas da bacia.

Em relação à demanda estimada para o abastecimento urbano (m³/s) e a vazão outorgada para seu uso, considerando os dados do período de 2010-2014, pode-se se observar na Figura 14 um o aumento pequeno, porém suficiente para que a demanda outorgada para o abastecimento urbano se tornasse maior que a estimada dentro da bacia chegando ao valor de 105,9% em relação à estimada.

120% 8 105,8% 105,9% 103,0% 94.9% 95,1% 6 90% m₃/s 60% 5,93 5,72 6,28 6,09 6,01 5,83 5,43 5,54 2 30% 0 0% 2010 2012 2014 2011 2013 Demanda estimada Demanda outorgada — Outorgada/Estimada


Figura 14- Vazão outorgada para uso urbano / Volume estimado para abastecimento urbano: %

4.4.3.2. Não Consuntivos

Entre os usos não-consuntivos na UGRHI 10, destacam-se os destinados à geração de energia elétrica, navegação, recreação, pesca e assimilação de efluentes.

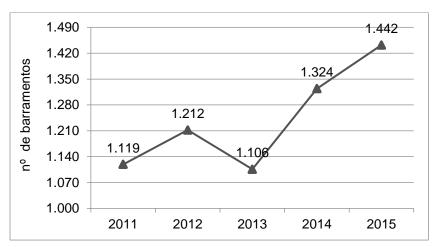

A Figura 15 indica o crescente número de outorgas emitidas pelo DAEE na bacia para obras como barramentos, canalização, travessia, retificação, entre outros que, de alguma forma, alteram o regime natural das águas.

Figura 15- Outorgas para outras interferências em cursos d'água.

A Figura 16, por sua vez, indica a quantidade de barramentos outorgados já existentes na bacia, demonstrando que existem mais outorgas do que efetivamente intervenções nos corpos hídricos.

Figura 16- Número total de barramentos outorgados

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

4.4.4. BALANÇO: DEMANDA VERSUS DISPONIBILIDADE

A questão técnica fundamental que se apresenta, para o adequado gerenciamento dos recursos hídricos de uma bacia hidrográfica, é o perfeito conhecimento da disponibilidade hídrica de uma determinada região ou bacia hidrográfica. Esse tipo de avaliação permite definir se os recursos hídricos disponíveis suportam as demandas desejadas, sejam elas pontuais ou mesmo objeto de políticas públicas. A avaliação da disponibilidade hídrica é capital para essas duas questões, subsidiando a tomada de decisão quanto a hierarquização de intervenções dentro da bacia.

A máxima disponibilidade hídrica superficial, considerada a vazão natural média, pode ser definida como a maior vazão que pode ser regularizada. A vazão regularizada seria a quantidade de água que pode ser fornecida por um reservatório de regularização, para determinado período de dados da série histórica de vazões naturais.

A UGHRI 10 apresenta a décima maior demanda do estado com um Q_{95%} de 29,7% (Figura 17). Considerando os valores de referência adotados pela ANA e adaptados pela CRHi para classificar as UGRHIs quanto a este parâmetro, a bacia do Sorocaba Médio Tietê se encontra em estado bom (< 30%). Porém, alguns municípios estão acima de 50%, em condição considerada crítica, como é o caso de Sorocaba (194%), Cerquilho (123,5%), Araçariguama (87,3%), Votorantim (82,2%), Boituva (79,1%), Tatuí (67,7%) e Itu (67,3%).

40% 45 40 29,8% 29,7% 29,1% 28,5% 35 27.4% 30% Volume: m³/s 30 25 20% 20 39,0 39,0 39,0 39,0 39,0 15 10% 10 10.67 5 0 0% 2011 2012 2013 2014 2015 Demanda total Q95% Demanda total X Q95%

Figura 17- Demanda total (superficial e subterrânea) em relação ao Q95%: %

O Qmédio da UGRHI para o ano de 2015, ilustrado na Figura 18, exibe um balanço entre Demanda Superficial e a Disponibilidade (Q_{médio}) de 10,8%, e apresenta-se em situação constante para o período de dados disponível. Utilizando os valores de referência adotados pela ANA e CRHI a bacia do Sorocaba Médio Tietê ainda se encontra em estado de atenção (≥10% e ≤20%). Os municípios que podem ser considerado em nível crítico de acordo com o parâmetro (>20%) são: Sorocaba, Cerquilho, Votorantim Araçariguama, Tatuí, Itu e Boituva.

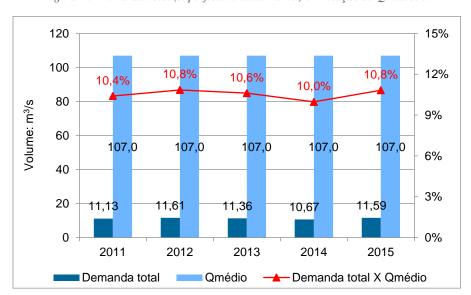


Figura 18- Demanda total (superficial e subterrânea) em relação ao Qmédio: %

52

:

Para o balanço entre Demanda Superficial e a Disponibilidade (Q_{7,10%}), na Figura 19, pode-se afirmar que a UGRHI 10 encontra-se em estado de atenção (≥30% e ≤50%), exibindo um Q_{7,10} de 44,1%. Os municípios que estão em estado considerado crítico para este parâmetro (acima de 50%), são Sorocaba, Capela do Alto, Cerquilho, Votorantim, Araçariguama, Boituva, Tatuí, Itu, Alumínio e Salto de Pirapora.

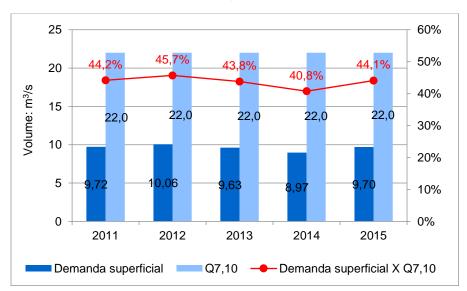


Figura 19- Demanda superficial em relação a vazão mínima superficial (Q7,10): %

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

No parâmetro Balanço entre Demanda Subterrânea em Relação a Reserva Explotável, a UGRHI apresenta um aumento percentual de 1,1% entre os anos de 2014 e 2015, totalizando um valor de 11,1%. De acordo com valores de referência o índice se encontra em estado bom (< 30%), sendo que apenas os municípios de Boituva, Sorocaba, Itu e Mairinque ultrapassam este percentual.

11,1% 20 12% 10.2% 10.0% 9,1% 16 8.3% 9% Volume: m³/s 12 6% 17,0 17,0 17,0 17,0 8 17,0 3% 4 1,71 1,88 1,73 1,40 1,55 0% 0 2011 2012 2013 2014 2015 Demanda subterrânea Reserva Explotável Demanda subterr. X Reserva Explot.

Figura 20- Demanda subterrânea em relação às reservas explotáveis: %

Em função da oferta em quantidade e qualidade de suas águas, e do relativo baixo custo de extração, além do grau de degradação da qualidade das águas superficiais (onde os tratamentos se apresentam cada vez mais dispendiosos), as águas subterrâneas vêm apresentando um crescente valor e, gradualmente, ocupando maior importância nos sistemas de abastecimento público e industrial.

Apesar das relativas boas condições dos parâmetros que consideram o balanço entre Demanda e Disponibilidade, e também os valores de referência adotados pela ANA e CRHI, cabe ressaltar que os índices consideram todos os recursos hídricos da bacia como disponíveis. Porém, muitos destes recursos estão com sua qualidade bastante comprometida para a maioria dos tipos de usos. O rio Tietê, por exemplo, que está dentre as principais vazões da bacia, têm o seu aproveitamento restrito para grande parte dos usos em praticamente toda sua extensão na bacia.

4.6. QUALIDADE DAS ÁGUAS

4.6.1. Qualidade das Águas Superficiais

O monitoramento das águas superficiais no Estado de São Paulo é realizado pela CETESB - Companhia Ambiental do Estado de São Paulo, que estabelece como principais objetivos deste programa:

- Avaliar a evolução da qualidade das águas doces;
- Propiciar o levantamento das áreas prioritárias para o controle da poluição das águas;
- Identificar trechos de rios onde a qualidade d'água possa estar mais degradada, possibilitando ações preventivas e de controle da CETESB, como a construção de ETEs (Estações de Tratamento de Esgoto) por parte do município responsável pela poluição ou a adequação de lançamentos industriais e:
- Subsidiar o diagnóstico da qualidade das águas doces utilizadas para o abastecimento público e outros usos e;
- Dar subsídio técnico para a elaboração dos Relatórios de Situação dos Recursos Hídricos, realizados pelos Comitês de Bacias Hidrográficas.
- Informar as condições de balneabilidade das praias de reservatórios boletins semanais;
- Informar a situação de qualidade dos principais mananciais de abastecimento público do Estado de São Paulo – divulgação bimestral do Índice de Qualidade de Água Bruta para fins de Abastecimento Público – IAP e;
- Informar as condições de proteção da biodiversidade dos ambientes de água doce – divulgação bimestral do Índice de Proteção da Vida Aquática – IVA.

A CETESB realiza o monitoramento das águas superficiais por meio das Redes de Amostragem: Rede Manual, Rede de Sedimentos, Balneabilidade de Rios e Reservatórios e Rede Automática. A descrição de cada uma delas encontra-se na Tabela 12.

Tabela 12 - Descrição das redes de monitoramento de águas superficiais da CETESB

Monitoramento CETESB	Objetivos	Início de Operação	Pontos	Frequência	Variáveis
Rede Básica	Fornecer um diagnóstico geral dos recursos hídricos no Estado de São Paulo.	1974	425	Bimestral	Físicas Químicas Biológicas
Rede de Sedimento	Complementar o diagnóstico da coluna d'água.	2002	32	Anual	Físicas Químicas Biológicas
Balneabilidade de Rios e reservatórios	Informar as condições da água para recreação de contato primário/banho à população.	1994	30	Semanal / Mensal	Biológicas
Monitoramento Automático	Controle de fontes poluidoras domésticas e industriais, bem como controle da qualidade da água destinada ao abastecimento público.	1998	14	Horária	Físicas Químicas

Fonte: CETESB, 2016.

Na UGRHI 10 existem 30 pontos com monitoramento, abrangendo 12 rios da bacia. São eles: Rio Una, Rio das Conchas, Rio do Peixe, Rio Pirajibú, Ribeirão Pirapitingui, Rio Pirapora, Rio Sarapuí, Rio Sorocabuçu, Rio Sorocamirim, Rio Sorocaba, Rio Tatuí, Rio Tietê. Também são monitorados 3 reservatórios: Reservatório Itupararanga, Reservatório de Barra Bonita e Reservatório de Rasgão. Na Figura 21 é possível observar a distribuição espacial dos pontos de monitoramento da UGRHI 10. Na Tabela 13 foi descrito cada ponto de amostragem e suas respectivas localizações.

UGRHI 10 - SOROCABA E MÉDIO TIETÊ 2015 SORO 02100 SOROCABA VOTORANTIM MAIRINQUE SÃO ROQUE UGRHI13 - TIETÊ / JACARÉ UGRHI 6 - ALTO TIETÊ UGRHI 11 - RIBEIRA DE IGUAPE/ LITORAL SUL LEGENDA: TIPOS DE MONITORAMENTO: PRINCIPAIS CIDADES REDE BÁSICA de MONITORAMENTO REDE de SEDIMENTO SEDE MUNICIPAL⇒ LIMITE DE UGRHI REDE de MONITORAMENTO em CAPTAÇÃO REDE de MONITORAMENTO AUTOMÁTICO LIMITE INTERESTADUAL REDE de BALNEABILIDADE ÁGUAS DOCES CURSO D'ÁGUA

Figura 21 - Mapa dos pontos de monitoramento da qualidade da água superficial da UGRHI 10

Fonte: CETESB, 2016.

Tabela 13 - Descrição e localização dos pontos de monitoramento da qualidade das águas da UGRHI 10.

Descrição	Código CETESB	Projeto	Ponto ANA (Federal)	Local de amostragem	Município	Latitude S	Longitude W
Rio Una - UGRHI 10	BUNA02900	R.B.	Não	Ponte na estrada que liga Ibiúna a Mayrink, próximo á Rodoviária de Ibiúna	IBIUNA	23 38 55	47 13 21
Rio das Conchas	COCH02850	R.B.	Integrado	Ponte na estrada vicinal depois do Bairro Estancia Cristal, em Conchas	CONCHAS	22 59 16	48 00 46
Rio do Peixe-UGRHI 10	EIXE02225	R.B.	Integrado	Ponte na SP-300 (Marechal Rondon), na divisa de Bofete com Conchas	CONCHAS	23 01 04	48 07 42
Rio Pirajibú	JIBU02900	R.B.	Não	Ponte próx. da Siderurgica Faço 3, no bairro Vitória Régia/Éden	SOROCABA	23 24 59	47 26 17
Ribeirão Pirapitingui	PGUI02700	R.B.	Não	Ao lado da captação Aguas de Itu, junto a barragem do condomínio Terras de São José.	ITU	23 17 32	47 16 42
Rio Pirapora	PORA02700	R.B.	Não	Na ponte próxima a captação de Salto de Pirapora	SALTO DE PIRAPORA	23 36 53	47 35 56
Rio Sarapuí	SAUI02900	R.B.	Integrado	Ponte na estrada vicinal Iperó/Tatuí, próxima à captação da SABESP de Boituva e Iperó.	IPERO	23 21 10	47 44 16
Rio Sorocabuçu	SOBU02800	R.B.	Não	Ponte na estrada Bunjiro Nakao, na captação de Ibiúna	IBIUNA	23 39 29	47 12 35
	SOIT02100	R.B.	Não	No meio do corpo central, lado esquerdo da Praia do Escritório, em frente a uma ilha.	IBIUNA	23 36 26	47 17 44
Reservatório Itupararanga	SOIT02601	Baln.	Não	Na praia do Piratuba, na Represa de Itupararanga, no Condomínio Antilhas.	IDIONA	23 37 58	47 21 46
	SOIT02801	Baln.	Não	No Clube ACM, na Represa de Itupararanga.	PIEDADE	23 37 23	47 24 10
	SOIT02900	R.B.	Integrado	Próximo a barragem, na estrada que liga Ibiúna a Votorantim.	VOTORANTIM	23 36 42	47 23 52
Rio Sorocamirim	SOMI02850	R.B.	Não	Ponte na estrada do Cangüera, na captação da SABESP de São Roque	SAO ROQUE	23 37 34	47 11 20
	SORO02050	R.B.	Não	Ponte Benito Sevilha, próximo à Prefeitura de Votorantim	VOTORANTIM	23 32 24	47 26 43
	SORO02100	R.B.	Integrado	Ponte Pinga-Pinga, na Av. Marginal, na cidade de Sorocaba.		23 28 36	47 26 29
	SORO02200	R.B.	Não	Ponte na estrada municipal que liga Sorocaba à rodovia Castelo Branco, em Itavuvu.	SOROCABA	23 24 30	47 28 48
Rio Sorocaba	SORO02500	R.B.	Integrado	Ponte no Bairro de Americana Velha, em Tatuí	TATUI	23 19 09	47 46 44
	SORO02700	R.B.	Não	Na ponte à montante da captação do Município de Cerquilho.	CERQUILHO	23 10 21	47 47 47
	SORO02700	Sed.	Não	Na captação de Cerquilho.	CENQUILHO	23 10 00	47 48 00
	SORO02900	R.B.	Integrado	Ponte na estrada que liga Laranjal Paulista à localidade de Entre Rios.	LARANJAL PAULISTA	23 01 22	47 49 11
Rio Tatuí	TAUI04900	R.B.	Não	Na foz do rio Tatuí, no bairro de Americana Velha, em Tatuí	TATUI	23 19 25	47 46 58
Reservatório de Barra Bonita	TIBB02100	R.B.	Não	No meio do corpo central, a jusante da confluência - Braços Tietê e Piracicaba.	BOTUCATU	22 36 46	48 20 52
burra bornta	TIBB02700	R.B.	Não	No meio do corpo central, na direção do Cór. Araquazinho.	SÃO MANUEL	22 32 30	48 26 42
Braço do Rio Tiete	TIBT02500	R.B.	Não	Ponte na rod SP-191 que liga Sta Maria da Serra a São Manoel.	BOTUCATU	22 40 41	48 15 06
	TIET02350	R.B.	Integrado	A cerca de 300 m da ponte da Rodovia do Açúcar (SP-308), na Fazenda Santa Isabel.	SALTO	23 12 01	47 20 08
Rio Tietê	TIET02400	R.B.	Não	Ponte na rodovia SP-113, que liga Tietê a Capivari, em Tietê.	TIETE	23 05 12	47 40 41
	TIET02450	R.B.	Integrado	Ponte na estrada para a faz. Santo Olegário, em Laranjal Paulista.		22 57 25	47 49 23
	TIET02450	M.Aut.	Não	EF-03. Próximo da ponte sobre o Rio Tietê, na estrada vicinal para a fazenda Santo Olegário, em Laranjal Paulista, entre SP 127 e SP 300. EF-03-Laranjal Paulista).	LARANJAL PAULISTA	22 57 26	47 49 14
D	TIRG02900	R.B.	Não	Próximo das comportas do Reservatório de Rasgão.	PIRAPORA DO	23 22 58	47 01 46
Reservatório de Rasgão	TIRG02900	M.Aut.	Não	EF-02. No canal próximo às comportas da barragem do Reservatório de Rasgão - EMAE (EF- 02-Rasgão).	BOM JESUS	23 22 55	47 01 47

Fonte: CETESB, 2016.

A CETESB utilizada índices para fornecer uma visão geral da qualidade da água, uma vez que integram diversas variáveis em um único indicador. Desta forma tanto o público técnico quanto a população em geral podem compreender, de forma mais abrangente, a situação da qualidade das águas. Os índices utilizados pela CETESB são: IQA (Índice de Qualidade das Águas), IAP (Índice de qualidade das águas para fins de abastecimento público), IVA (Índice de qualidade

das águas para preservação da vida aquática), IET (Índice de Estado Trófico), entre outros (conforme descrição na Tabela 14).

Tabela 14 - Índices de qualidade das águas superficiais utilizados pela CETESB

Rede de Monitoramento	Índice de Qualidade		Principal finalidade	Pontos da Rede	Variáveis que compõem os índices
	IQA	Índice de Qualidade das Águas	Diluição de efluentes (principalmente doméstico)	Todos	Temperatura, pH, Oxigênio Dissolvido, Demanda Bioquímica de Oxigênio, <i>Escherichia coli I</i> Coliformes Termotolerantes, Nitrogênio Total, Fósforo Total, Sólidos Totais e Turbidez.
	IAP	Índice de Qualidade das Águas para Fins de Abastecimento Público	Abastecimento Público	Utlizados para abastecimento público	Temperatura, pH, Oxigênio Dissolvido, Demanda Bioquímica de Oxigênio, <i>Escherichia coli</i> , Nitrogênio Total, Fósforo Total, Sólidos Totais, Turbidez, Ferro, Manganês, Alumínio, Cobre, Zinco, Potencial de Formação de Trihalometanos, Número de Células de Cianobactérias (Ambiente Lêntico), Cádmio, Chumbo, Cromo Total, Mercúrio e Níquel.
Rede Básica	IET	Índice do Estado Trófico	Eutrofização	Todos, exceto os	Clorofila a e Fósforo Total.
	IVA	Índice de Qualidade das Águas para Proteção da Vida Aquática	Proteção da vida aquática	rios enquadrados na Classe 4 (CONAMA 357/05)	Oxigênio Dissolvido, pH, Ensaio Ecotoxicológico com <i>Ceriodaphnia dubia</i> , Cobre, Zinco, Chumbo, Cromo, Mercúrio, Níquel, Cádmio, Surfactantes, Clorofila <i>a</i> e Fósforo Total.
	ICF	Índice da Comunidade Fitoplanctônica	Proteção da vida aquática	Ambientes lênticos utilizados para abastecimento; ou estado mesotrófico	Comunidade Fitoplânctônica
	ICZ	Índice da Comunidade Zooplanctônica	Proteção da vida aquática	Alguns reservatórios	Comunidade Zooplânctônica e Clorofila a
Rede de Balneabilidade	IB	Índice de Balneabilidade	Balneabilidade / Recreação	Todos	Coliformes Termotolerantes ou Escherichia coli.
	cqs	Critério de Qualidade do Sedimento	Proteção da vida aquática	Todos	Contaminantes químicos que possuem valores estabelecidos pelo CCME¹; Ensaio Ecotoxicológico com <i>Hyalella azteca</i> , Comunidade Bentônica
Rede de Sedimento	ICB	Índice da Comunidade Bentônica	Proteção da vida aquática	Pontos que não apresentam qualidade ruim / péssima na água	Comunidade Bentônica

Fonte: CETESB, 2013.

4.6.1.1. IQA - Índice de Qualidade das Águas

O IQA é uma adaptação da CETESB a partir de um estudo realizado em 1970 pela "National Sanitation Foundation" dos Estados Unidos. Este índice utiliza nove variáveis consideradas relevantes para a avaliação da qualidade das águas, tendo como determinante principal a sua utilização para abastecimento público. Mas também possui algumas limitações pois não contempla outras variáveis potencialmente perigosas para o abastecimento público, tais como: metais

pesados, compostos orgânicos com potencial mutagênico, substâncias que afetam as propriedades organolépticas da água, número de células de cianobactérias e o potencial de formação de trihalometanos das águas de um manancial. De qualquer forma é um importante indicador pois quando utilizado com os demais, auxiliam nas tomadas de decisões de agentes públicos e privados.

A UGRHI 10 possui 25 pontos de monitoramento do IQA. Nota-se uma tendência de aumento de pontos classificados como "Ruim" e "Péssima" (Figura 22). Essa tendência pode estar relacionada à uma série de fatores como: aumento da carga orgânica na água, diminuição de regime de vazão dos rios e consequentemente a redução da sua capacidade de diluição, ineficiência do saneamento nas áreas com maior expansão urbana, expansão de áreas agrícolas perto de corpos d'água, aumento no número de indústrias resultando no aumento de efluentes industriais.

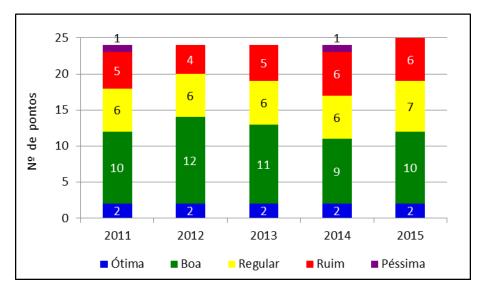


Figura 22 - Quantidade de pontos de monitoramento do IQA na UGRHI 10 e as suas respectivas classificações

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

:

Analisando os últimos 5 anos, os pontos de monitoramento com os valores médios de IQA mais baixos são observados no Rio Sorocaba (entre os municípios de Sorocaba e Votorantim), Rio Pirajibú (foz), Rio Tietê (todos os pontos) e

Reservatório do Rasgão. Já os pontos de monitoramento do Reservatório de Itupararanga apresentam as melhores pontuações de IQA (Figura 23).

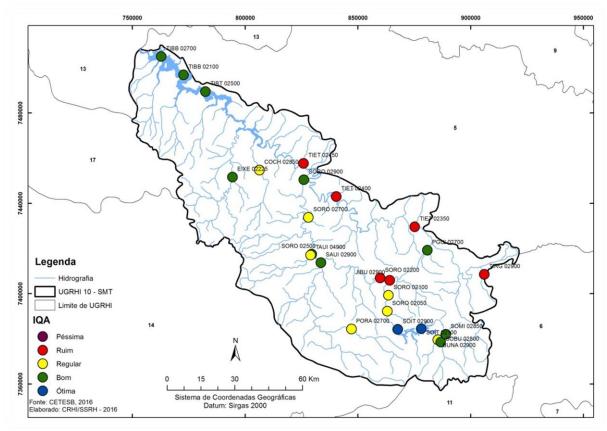


Figura 23 - Distribuição dos pontos de monitoramento do IQA na UGRHI 10, referente ao ano de 2015

Fonte: SSRH, 2016.

Na análise de regressão linear, realizada pela CETESB (2016), foi possível identificar uma tendência de piora na qualidade da água em 3 pontos de monitoramento da UGRHI 10 que são nos Rios Sorocaba e Pirajibú, e também no Reservatório de Barra Bonita, conforme a Tabela 15.

Tabela 15 - Resultados da análise de regressão linear, referente aos valores de IQA nos últimos 5 anos na UGRHI 10.

UGRHI	Corpo Hídrico	Ponto	2010	2015	Tendência	Motivo Provável 2015
	Reserv. de Barra Bonita	TIBB02700	77	66	Piora	Aumento do estado trófico
10	Rio Pirajibú	JIBU02900	43	36	Piora	Regime de chuvas, menos intenso nos últimos anos,
	Rio Sorocaba	SORO02700	58	50	Piora	diminuindo sua capacidade de diluição

Fonte: CETESB, 2016.

4.6.1.2. IAP - Índice de Qualidade das Águas Brutas para fins de Abastecimento Público

O IAP é considerado um indicador similar ao IQA pois indica as condições de qualidade das águas para fins de abastecimento público. Mas além das variáveis consideradas no IQA, são avaliadas as substancias toxicas e as variáveis que afetam a qualidade organoléptica da água.

A UGRHI 10 possui 7 pontos de monitoramento do IAP. Constatou-se que há uma tendência de aumento de pontos classificados como "Ruim" (Figura 24). Assim como o IQA essa tendência pode estar relacionada à uma série de fatores como aumento da carga orgânica na água, diminuição de regime de vazão dos rios e consequentemente a redução da capacidade de depuração da água, ineficiência do saneamento nas áreas com maior expansão urbana, expansão de áreas agrícolas perto de corpos d'água, aumento no número de indústrias que resulta no aumento de efluentes industriais.

62

Nº de pontos ■ Ótima Boa Regular Ruim Péssima

Figura 24 - Quantidade de pontos de monitoramento do IAP na UGRHI 10 e as suas respectivas classificações.

Analisando os últimos 5 anos, nota-se que os pontos de monitoramento com os valores médios de IAP mais baixos são observados no Rio Sorocaba (Laranjal Paulista), Rio Sarapuí (foz) e Rio Pirapora (trecho médio do rio). Já os pontos de monitoramento do Reservatório de Itupararanga apresentam as melhores pontuações de IQA (Figura 24). É necessário ter atenção quanto a qualidade da água do Rio Sorocamirim, que abastece o Reservatório de Itupararanga, visto que nesse período o IQA teve uma tendência de piora.

Figura 25 - Distribuição dos pontos de monitoramento do IAP na UGRHI 10, referente ao ano de 2015

Fonte: SSRH, 2016.

4.6.1.3. IVA - Índice de Qualidade das Águas para a Proteção da Vida Aquática

O IVA é um índice com maior sensibilidade à alterações na qualidade da água para a vida aquática. Ele é utilizado para avaliar a qualidade das águas para a proteção da vida aquática, considerando as variáveis essenciais para os organismos aquáticos (Oxigênio Dissolvido, pH e Toxicidade por meio de ensaio eco toxicológico com Ceriodaphnia dubia), as substancias tóxicas e o grau de trofia.

A UGRHI 10 possui 20 pontos de monitoramento do IVA. Constatou-se que há uma tendência de aumento de pontos classificados como "Ruim" e de redução de pontos classificados como "ótimo" (Figura 26). Os resultados do IVA podem ser influenciados negativamente, pelo grau de trofia, pela presença de substâncias tóxicas e pela alteração de parâmetros essenciais a vida aquática (pH, Oxigênio Dissolvido e Toxicidade).

64

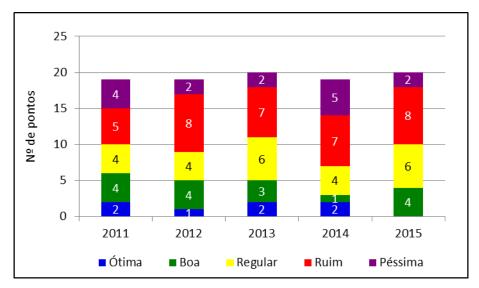


Figura 26 - Quantidade de pontos de monitoramento do IVA na UGRHI 10 e as suas respectivas classificações

Analisando os últimos 5 anos, nota-se que os pontos de monitoramento com os valores médios de IVA mais baixos são observados no Rio Tietê e Reservatório de Barra Bonita. Mas deve ter atenção no Rio Sorocaba e Rio Pirapora pois também foram classificados com IVA "Ruim". Já os pontos de monitoramento do Rio do Peixe, Rio das Conchas e na foz do Rio Sorocaba apresentam as melhores pontuações de IVA (Figura 27). É necessário ter atenção quanto a qualidade da água do Rio Tietê visto que nesse período o IVA teve uma tendência de piora em todos os pontos de monitoramento.

Figura 27 - Distribuição dos pontos de monitoramento do IVA na UGRHI 10, referente ao ano de 2015

Fonte: SSRH, 2016.

4.6.1.4. IET - Índice de Estado Trófico

O Índice do Estado Trófico tem por finalidade classificar corpos d'água em diferentes graus de trofia, ou seja, avalia a qualidade da água quanto ao enriquecimento por nutrientes e seu efeito relacionado ao crescimento excessivo das algas e cianobactérias. São utilizadas as variáveis clorofila e fósforo para o cálculo deste índice (CETESB, 2016).

A UGRHI 10 possui 20 pontos de monitoramento do IET. Constatou-se que há uma tendência de aumento de pontos classificados como "Superotrófico" e "Hiperotrófico" e de redução de pontos classificados como "Oligotrófico" e "Superoligotrófico" (Figura 28). Os resultados do IET estão diretamente relacionados com a quantidade de fósforo, cuja principal fonte são os efluentes domésticos lançados nos rios, e a quantidade de organismos fito planctônicos que se beneficiam de ambientes com essas características.

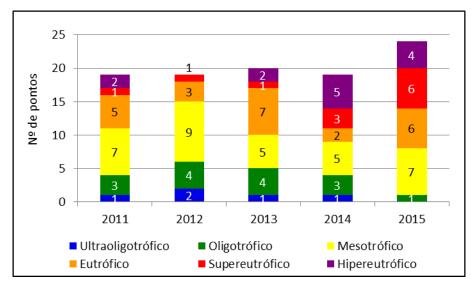


Figura 28 - Quantidade de pontos de monitoramento do IET na UGRHI 10 e as suas respectivas classificações

Analisando os últimos 5 anos, nota-se que os pontos de monitoramento com os valores médios de IET mais baixos são observados no Rio Tietê, Rio do Peixe e Reservatório de Barra Bonita. Mas deve ter atenção no Rio Sorocaba pois também foi classificado como "Superoligotrófico" (Figura 29). Segundo a análise de regressão da CETESB (2016) foi identificada uma tendência de piora nos valores do IET referente ao Rio Sorocaba e Reservatório de Barra Bonita.

As águas do Reservatório Itupararanga foram classificadas com IET "Eutrófico" É necessário ter atenção visto que toda essa região tem como predomínio as atividades agrícolas, chácaras de veraneio e silvicultura, atividades que contribuem diretamente no aumento do IET. O Rio Tietê recebe uma grande quantidade de cargas poluidoras do Alto Tietê (591.173 Kg DBO/dia) e PCJ (106.291 Kg DBO/dia), que contribuem para a péssima qualidade de suas águas, no trecho do Médio Tietê.

Legenda Oligotrófico Mesotrófico Hipereutrófico Datum: WGS84. Projeção: UTM Fonte: CETESB, 2015 220000 180000

Figura 29 - Distribuição dos pontos de monitoramento do IET na UGRHI 10, referente ao ano de 2015

Fonte: SSRH, 2016.

4.6.1.5. Concentração de oxigênio dissolvido

100000

Aproximadamente 40% dos pontos de monitoramento apresentaram os valores de oxigênio dissolvido abaixo do que é exigido pela Resolução CONAMA 357/2005, entre os anos de 2011 e 2015 (Figura 30). Os valores que não atendem a legislação foram observados nos Rios Sorocaba, Rio Una, Rio das Conchas, Rio Pirajibú, Rio Pirapora, Rio Tietê e Reservatório de Rasgão.

N° de pontos

Figura 30 - Quantidade de pontos que atendem ou não atendem o valor de oxigênio dissolvido conforme a Resolução CONAMA 357/2005

■ Não atende

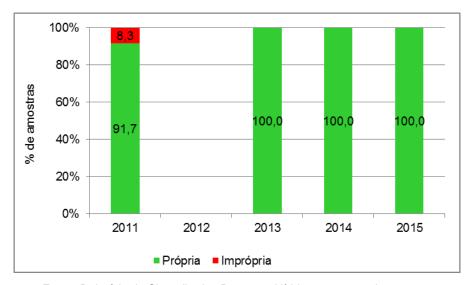
Atende

4.6.1.6. Mortandade de Peixes

Quando ocorre a mortandade de peixes é uma indicação de um fator extremo de pressão no corpo d'água que pode resultar na morte de diversas espécies de organismos. Os casos de mortandade dos organismos aquáticos estão normalmente relacionados às alterações da qualidade da água e, como falta de oxigênio ou proliferação de algas liberam toxinas. Embora nem sempre seja possível identificar suas causas, o seu registro consiste em um bom indicador da suscetibilidade do corpo hídrico em relação às fontes de poluição (CETESB, 2016).

Na UGRHI 10 há uma média de 10,6 registros nos últimos 5 anos. Só que apenas em 2011 houve 22 registros, enquanto que nos demais anos ficou entre 8 e 7 registros, mantendo-se estável. Seguem abaixo as informações referente aos registros de mortandade de peixes na UGRHI 10.

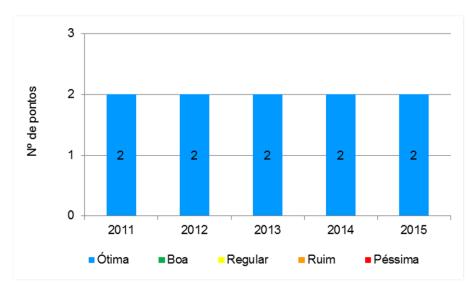
Figura 31 - Número de registros de mortandade de peixes na UGRHI 10, entre os anos de 2011 e 2015


4.6.1.7. Classificação Semanal das Praias de Reservatórios

A classificação semanal das praias de reservatórios e rios tem como objetivo analisar a qualidade das águas, verificando se ela é própria ou imprópria para a recreação e uso humano. A CETESB, responsável pelo monitoramento das praias de rios e reservatórios faz a classificação de acordo com as seguintes categorias:

- l= Imprópria (presença de *E.Coli*);
- IA= Imprópria (presença de Algas);
- IB= Imprópria (presença de Algas e de E. Coli);
- P= Própria;
- Sb= Sistematicamente boa.

Nos últimos 3 anos o Reservatório de Itupararanga tem apresentado 100% das amostras classificadas como "Própria". Apenas em 2011 8,3% das amostras foram classificadas como "Imprópria", devido a presença de algas filamentosas (Figura 32).


Figura 32 - Classificação semanal das praias de rios e reservatórios: % de amostras por classificação

4.6.1.8. IB - índice de Balneabilidade das praias em reservatórios e rios

O Índice de Balneabilidade tem como objetivo avaliar a qualidade de água para fins de recreação de contato direto com a água, sendo aplicado em praias de águas interiores, localizadas em rios e reservatórios. Na UGRHI 10 apenas é avaliado o Reservatório de Itupararanga em dois pontos de monitoramento. No período entre os anos de 2011 e 2015 os dois pontos foram classificados como "Ótimo" (Figura 33).

Figura 33 - Gráfico referente ao IB para os dois pontos de monitoramento do Reservatório de Itupararanga entre os anos de 2011 e 2015

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

A Resolução CONAMA 274/200 é a legislação específica que determina a classificação das praias. A CETESB, através da Decisão de Diretoria Nº 112/2013/E, de 09/04/2013 estabeleceu novos valores, mais restritivos, para classificação do indicador *Escherichia coli*. A classificação atualmente utilizada consta na tabela abaixo.

Tabela 16 - Valores de referência para o Índice de Balneabilidade utilizado pela CETESB

CATEGORIA		Coliforme Termotolerante (UFC/100 mL)	Escherichia coli (UFC/100 mL)	Enterococos (UFC/100 mL)		
₹	EXCELENTE	Máximo de 250 em 80% ou mais tempo	Máximo de 150 ⁽¹⁾ em 80% ou mais tempo	Máximo de 25 em 80% ou mais tempo		
PRÓPRIA	MUITO BOA Máximo de 500 em 80% ou mais tempo		Máximo de 300 ⁽¹⁾ em 80% ou mais tempo	Máximo de 50 em 80% ou mais tempo		
4	SATISFATÓRIA Máximo de 1.000 em 80% ou mais tempo		Máximo de 600 ⁽¹⁾ em 80% ou mais tempo	Máximo de 100 em 80% ou mais tempo		
IMPRÓPRIA		Superior a 1.000 em mais de 20% do tempo	Superior a 600 ⁽¹⁾ em mais de 20% do tempo	Superior a 100 em mais de 20% do tempo		
			Maior que 1.500 ⁽¹⁾ na última medição	Maior que 400 na última medição		

Fonte CETESB, 2016.

4.6.2. Qualidade das Águas Subterrâneas

A CETESB é a responsável pelo monitoramento das águas subterrâneas no Estado de São Paulo. Na UGRHI 10 são avaliados 4 aquíferos por meio de e quatorze pontos de monitoramento, dos quais doze são poços tubulares que captam água para abastecimento público, acrescidos de um poço tubular e uma nascente utilizados na exploração de água mineral. Segue na Tabela 17 as características de cada poço e as respectivas localizações.

Tabela 17 - Características de pocos de monitoramento das águas subterrâneas na UGRHI 10 e as respectivas localizações

Município	Ponto	Descrição	Aquífero	Profundidade de captação (m)	Nível Estático (m)	Latitude (S)	Longitude (0)
Anhembi	GU0346P	PP1 Pirambóia - Sabesp	Guarani	94 a 190	88	22° 57' 48"	48° 11' 44"
Botucatu	GU0016P	P2 - Sabesp	Guarani	54 a 110	42	22° 46' 29"	48° 23' 37"
Capela do Alto	TU0025P	P6 - Sabesp	Tubarão	48 a 368	0	23° 27' 56"	47° 45' 11"
Cesário Lange	TU0027P	P4 - Sabesp	Tubarão	95 a 244	21	23° 13' 15"	47° 57' 30"
Iperó	TU0151P	P4 - Sabesp	Tubarão	20 a 282	47	23° 21' 35"	47° 41' 30"
Mairinque	PC0320P	P18 Dona Catarina - Saneaqua	Pré Cambriano	17 a 21e de 33 a 150	2	23° 25' 25"	47° 13' 22"
Piedade	PC0098P	P1 Bairro dos Leites - Sabesp	Pré-Cambriano	32 a 251	1	23° 42' 03"	47° 30' 04"
Piedade	PC0099P	P1A Bairro Jurupará - Sabesp	Pré-Cambriano	10 a 180	1	23° 38' 39"	47° 26' 25"
Porto Feliz	TU0347P	P3 Dist. Palmital - Águas de Porto Feliz	Tubarão	80 a 390	54	23° 13' 43"	47° 30' 03"
Quadra	PD0362P	P Ped. Rod. Castelo Branco km 158,3	Aquiclude Passa Dois	18 a 216	71	23° 14' 45"	48° 05' 09"
São Roque	PC0154N	P Mineração Estância São Roque	Pré-Cambriano	Nascente	0	23° 29' 11"	47° 07' 39"
São Roque	PC0155P	P Mineração Estância São Roque	Pré-Cambriano	32 a 186	14	23° 29' 10"	47° 07' 41"
Sarapuí	TU0135P	P3 - Sabesp	Tubarão	47 a 294	0	23° 38' 28"	47° 49' 38"
Tatuí	TU0143P	P1 - Sabesp	Tubarão	18 a 101	3	23° 18' 51"	47° 47' 22"

Fonte CETESB, 2013.

4.6.2.1. Concentração de Íons Nitrato

Na UGRHI 10 os valores da concentração de nitrato foram superiores à 5,0 mg N.L⁻¹ apenas em um ponto de monitoramento, no ano de 2015 (Figura 34). O ponto é referente ao Aquífero Guarani, mesmo local de captação para abastecimento na cidade de Botucatu. É necessário ter atenção visto que ao longo dos 5 anos de avaliação verifica-se que o mesmo ponto apresenta valores superiores à 5,0 mgN.L⁻¹ em pelo menos em uma, das 2 campanhas realizados no ano.

Normalmente há ocorrência de baixos teores de íons nitrato nas águas subterrâneas. Essa substância é consequente do processo final da degradação da matéria orgânica. Quando o valor ultrapassa 5,0 mgN.L⁻¹ é um indicador de contaminação antrópica. Quando a concentração ultrapassa 10,0 mgN.L⁻¹ pode causar riscos à saúde humana e portanto é um orientador de intervenções em áreas

contaminadas. A contaminação por nitrato ocorre principalmente por compostos nitrogenados de fontes antrópicas difusas, como a aplicação de fertilizantes orgânicos e sintéticos nitrogenados, a utilização de fossas sépticas ou negras, vazamentos das redes coletoras de esgoto e influência de rios contaminados na zona de captação de poços (CETESB, 2016).

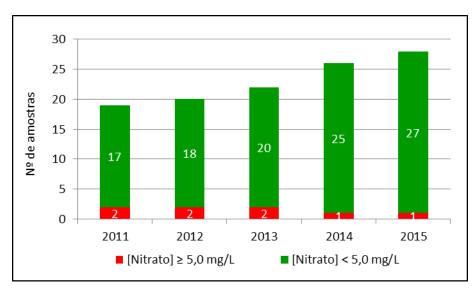


Figura 34 - Gráfico referente ao número de amostras conformes e desconformes de concentração de nitrato em águas subterrâneas da UGRHI10

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

4.6.2.2. Indicador de Potabilidade das Águas Subterrâneas

O Indicador de Potabilidade das Águas Subterrâneas representa a porcentagem de amostras de águas subterrâneas em conformidade com os padrões de potabilidade estabelecidos pelo Ministério da Saúde, por meio da Portaria MS nº 2.914 de 12 de dezembro de 2011, refletindo o padrão de qualidade da água bruta subterrânea usada para abastecimento público.

Entre os anos de 2010 e 2015 o IPAS da UGRHI 10 (Tabela 18) foi classificado entre "Regular" e "Ótimo". Mas é necessária a atenção porque alguns parâmetros como arsênio, manganês e fluoreto foram encontrados em quase todos os anos, entre o período de 2010 e 2015. Principais fontes antropogênicas de contaminação de arsênio são mineração, agrotóxicos combustão de carvão. O fluoreto pode estar relacionado com a ocorrência do mineral flúor e do grau de interação rocha e a água

subterrânea. Mas é possível a contaminação devido ao uso e a presença de industrias de alumínio e também ao uso de fertilizantes. O manganês também está relacionado diretamente com os resíduos de fertilizantes e fungicidas.

Tabela 18 - Indicador de Potabilidade das Águas Subterrâneas da UGRHI 10

	IPAS (%)	Parâmetros Desconformes
2010	90,0	Fluoreto, sódio
2012	65,0	Arsênio, ferro, manganês, bactérias heterotróficas
2013	90,9	Arsênio, manganês
2014	80,8	Fluoreto, arsênio, sódio, manganês
2015	64,3	Fluoreto, arsênio, sódio, ferro, manganês, sulfato, bactérias heterotróficas

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

4.6.2.3. Classificação da água subterrânea

A Figura 35 informa a classificação das amostras das águas subterrâneas da UGRHI 10 classificando como Potável ou Não Potável, conforme os padrões estabelecidos na Portaria MS 2.914/2011. O número de amostras aumentou entre 2010 e 2015 já que a cobertura do monitoramento se ampliou na UGRHI 10. Não foi possível verificar uma tendência no período analisado. Mas deve-se ter atenção para dois pontos de monitoramento do Aquífero Tubarão (Porto Feliz Cesário Lange) e no Aqüiclude Passa Dois (Quadra) por apresentarem um histórico de valores desconformes para o consumo humano como: manganês (Porto Feliz); fluoreto e sódio (Cesário Lange); fluoreto e bactérias heterotróficas (Quadra).

Nº de amostras Potável ■ Não potável

Figura 35 - Classificação da água subterrânea: nº de amostras por categoria

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

4.7. SANEAMENTO BÁSICO

A Lei n.º 11.445/2007, que ficou conhecida como a Lei de Saneamento Básico, define o saneamento básico como sendo um conjunto de serviços, infraestruturas e instalações de abastecimento de água, esgotamento sanitário, limpeza urbana e manejo de resíduos sólidos e drenagem de águas pluviais urbanas, A partir de sua publicação, todas as prefeituras passaram a ter um prazo determinado para elaborar seu próprio Plano Municipal de Saneamento Básico (PMSB). Sem um Plano vigente, o município ficaria impedido de receber recursos federais para projetos de saneamento básico, por exemplo.

O PMSB é um instrumento que, em linhas gerais, deve ser a referência de planejamento de cada município, estabelecendo as diretrizes para a universalização do serviço público de saneamento básico, tornando-se um instrumento estratégico de planejamento, desenvolvimento e gestão participativa.

Os processos de elaboração dos PMSB da Bacia do Sorocaba e Médio Tietê tiveram como referências principais, além da lei de Saneamento Básico (n.º 11.445/2007), as diretrizes sugeridas pelo Ministério das Cidades, através das "Diretrizes da Política e Elaboração de Planos Municipais de Saneamento Básico".

Todos os municípios integrantes da bacia dos rios Sorocaba e Médio Tietê, com exceção apenas de Alumínio, elaboraram seus PMSB de forma conjunta, organizando-se em oficinas participativas em cada uma das Sub-bacias pertencentes à bacia. Esse processo foi realizado com o apoio do Comitê da Bacia Hidrográfica dos rios Sorocaba e Médio Tietê (CBH-SMT) e os planos elaborados pela empresa especializada ENGECORPS (Engecorps Engenharia S.A.).

4.7.1. Abastecimento de Água Potável

Na UGRHI 10 existe uma tendência positiva para a universalização do abastecimento público. Porém, considerando o índice de atendimento de águas de 89,3%, apresentado até o ano de 2015 (Figura 36), e a população de 1.935.803 habitantes, em números absolutos ainda faltariam atender aproximadamente 209.066 habitantes. Existem ainda três municípios com índices considerados "ruins" na bacia: Quadra (26,4%), Ibiúna (37,4%) e Piedade (49,7%) apresentam índices de atendimento inferiores à 50%.

Analisando os PMSB das cidades integrantes da bacia, verificou-se que grande parte das obras previstas para a construção de Estações de Tratamento de Água (ETA), ainda se encontram em andamento ou mesmo na etapa de Licenciamento Ambiental. Estas obras, quando obtiverem seu devido encaminhamento poderão melhorar de forma importante as condições de abastecimento na bacia.

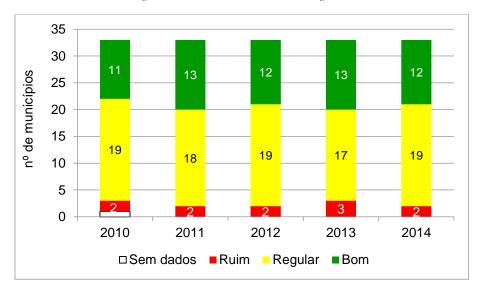


Figura 36 - Índice de atendimento de água: %

As perdas nos sistemas de distribuição de água também são importantes, uma vez que, com a redução das perdas físicas, o operador responsável pelo abastecimento pode produzir, com uma mesma quantidade de água, resultados melhores no abastecimento da população, além de reduzir gastos do sistema. O índice de perdas na bacia ainda é alto, como observado na Figura 37, ostentando uma média de 33,6 % para a região. Os municípios que apresentam os maiores índices são Mairinque (54,8%), São Roque (53,9%) e Tietê (50,5%).

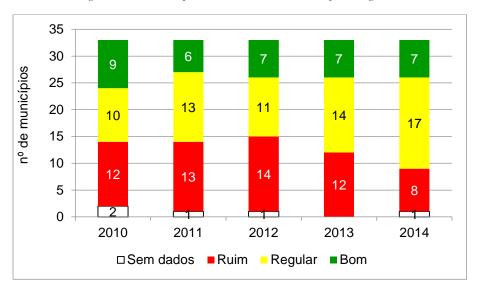


Figura 37 - Índice de perdas do sistema de distribuição de água: %

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

4.7.2. Esgotamento Sanitário

Os sistemas de esgotamento sanitários requerem não apenas a implantação de uma rede de coleta, mas também um adequado sistema de tratamento e disposição final, que possa garantir uma qualidade de vida com as mínimas condições higiênicas, o controle e prevenção de doenças. Sendo assim, merecem ter a devida atenção por parte do poder público, visando garantir o atendimento das necessidades básicas da população.

Constatou-se uma redução aproximada de 9,5% da carga poluidora remanescente entre os anos de 2010 e 2015 (Figura 38). Apesar da pequena redução,

o cenário é positivo para a bacia, uma vez que a quantidade de efluentes sem tratamento, lançados diretamente nos cursos d'água, diminuiu. A redução aparece como consequência dos maiores investimentos realizados na UGRHI 10, aumentando a coleta e tratamento dos efluentes domésticos. Atualmente, a redução da carga poluidora (64,8%) é maior que a média apresentada no Estado (51,8%).

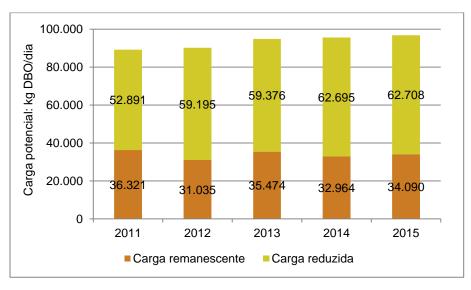


Figura 38 - Carga orgânica poluidora doméstica: kg DBO/dia

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

A Tabela 19, retirada do Relatório de qualidade das águas interiores no estado de São Paulo (Cetesb, 2016) ilustra toda a situação da bacia com relação à questão do esgotamento sanitário.

Tabela 19 – Situação do Esgotamento Sanitário de todos os municípios pertencentes à UGRHI 10

Município	Concessão	População	o Atendimento (%)		Eficiência	Carga Poluidora (kg DBO/dia)		ICTEM	Corpo Receptor	
Municipio		Urbana	Coleta	Tratamento	Enciencia	Potencial	Remanesc.	ㅁ	Corpo neceptor	
Alambari	SABESP	4.179	74	100	92,00	226	72	7,04	Rio Alambari	
Alumínio	SABESP	15.150	89	0		818	818	1,34	Córrego do Varjão/Córrego do Bugre	
Anhembi	SABESP	4.760	90	83	85,00	257	94	7,22	Cór.do Matadouro	
Araçariguama	SABESP	13.285	64	0		717	717	0,96	Ribeirão Araçariguama	
Araçoiaba da Serra	ÁGUAS DE ARAÇOIABA	21.559	37,5	100	80,00	1.164	815	4,01	Ribeirão Vacariu	
Bofete	SABESP	7.174	95	100	91,35	387	51	9,73	Rio do Peixe/Córrego São Roque	
Boituva	SABESP	52.420	92	100	30,50	2.831	2.036	4,90	Cór.Pau D'Alho , Cór.Água Branca e Rib.Jeriv	
Botucatu	SABESP	134.389	94	100	91,22	7.257	1.034	9,91	Cór.Lavapés, Cór. Cintra e Cór. Comur	
Cabreúva	SABESP	39,435	80	100	92,36	2.130	556	7,70	Rib.Piral (Afl.do R.Jundiai), Rib Cabreúva, Rio Tieté	
Capela do Alto	SABESP	16.137	75	100	94,00	871	257	7,71	Córrego Olaria	
Cerquilho	SAAEC	42.808	98	100	93,26	2.312	199	9,97	Rib.da Serra, Cór.Taquaral e R.Sorocaba	
Cesário Lange	SABESP	11.586	84	100	66,60	626	276	6,60	Rib. Aleluia e Rib.Onça	
Conchas	SABESP	14.097	91	100	93,00	761	117	9,87	Rib.Conchas	
lbiúna	SABESP	26.773	36	100	90,00	1.446	977	4,65	R.Sorocamirim, Rib.Murundu, Rib.Paruru	
Iperó	SEAMA	20.597	70	100	70,00	1.112	567	6,24	Rio Sorocaba e Córrego Ipanema	
Itu	AGUAS DE ITU	156.406	98	74	83,00	8.446	3.362	6,99	Rib.Guaraú, Varjão e Tapera Grande	
Jumirim	PM	1.827	95	100	54,00	99	48	6,46	Ribeirão Água Podre	
Laranjal Paulista	SABESP	24.516	92	100	82,24	1.324	322	8,10	Rio Sorocaba / Rio Tietê	
Mairinque	SANEAQUA	36.942	75	0		1.995	1.995	1,13	Cór.do Varjão	
Pereiras	SAMASPE	5.478	100	100	73,00	296	80	8,05	Rib Conchas	
Piedade	SABESP	24.922	56	96	90,00	1.346	695	5,92	Rio Pirapora	
Porangaba	SABESP	4.495	81	100	82,00	243	82	7,23	Rio Feio	
Porto Feliz	SAAE	43.644	99	100	90,89	2.357	236	9,99	Rio Tieté	
Quadra	SABESP	918	89	100	96,00	50	7	9,54	Rib.Palmeira	
Salto de Pirapora	SABESP	34.154	90	100	93,00	1.844	301	9,65	Rio Pirapora	
São Roque	SABESP	78.467	61	0		4.237	4.237	0,92	Rios Carambel, Guaçu, Marmeleiro e Araca	
Sarapul	SABESP	7.242	57	0		391	391	0,86	Ribeirão Fazendinha	
Sorocaba	SAAE	638.351	98	91,7	90,35	34.471	6.483	9,85	R.Sorocaba, R.Pirajibu, R.Itanguá, R.Ipanem	
Tatuí	SABESP	110.718	93	85	83,80	5.979	2.018	7,48	Rio Tatul	
Tietê	SAMAE	36.530	97	40	89,95	1.973	1.284	4,82	Rio Tieté	
Torre de Pedra	SABESP	1.549	96	100	61,00	84	35	7,05	Rib.Torre de Pedra	
Vargem Grande Paulista	SABESP	48.720	27	27	10,00	2.631	2.612	0,86	Rib.Vargem Grande	
Votorantim	SAAE	113.279	98	98	81,72	6.117	1.316	8,54	Rio Sorocaba, Cór. Cubatão, Cór. Itapeva, Rio Ipaneminha	

Fonte: Cetesb, 2016.

O ICTEM, apresentado na Figura 39, índice que expressa a efetiva remoção da carga poluidora nos municípios apresentou uma melhora no decorrer dos últimos anos. Em 2015 a situação verificada foi a de 13 municípios sendo classificados como "bom", enquanto que outros 10 aparecem classificados como "Péssimo" e "Ruim".

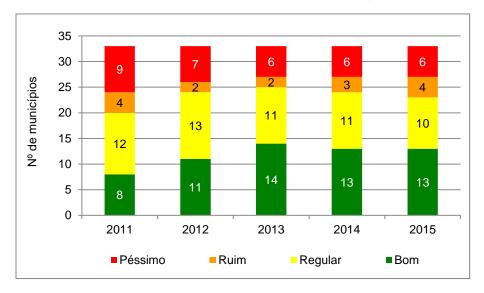


Figura 39 - ICTEM (Indicador de Coleta e Tratabilidade de Esgoto da População Urbana de Município)

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

:

Da mesma forma que para as ETAs, a análise dos PMSB das cidades integrantes da bacia, demonstrou que grande parte das obras previstas para a construção de Estações de Tratamento de Esgoto (ETE) e de Sistemas de Coleta e Afastamento de Esgoto, ainda se encontram em planejamento, andamento ou mesmo na etapa de Licenciamento Ambiental. Estas obras, quando obtiverem seu devido encaminhamento poderão melhorar de forma importante as condições de esgotamento sanitário na bacia.

4.7.3. Manejo de Resíduos Sólidos

Entre 2010 e 2014 houve um aumento de 87,7% na geração de resíduos sólidos urbanos (Figura 40). O aumento significativo não poderia ser respondido apenas com o aumento da população ou dos setores econômicos da bacia. Esse aumento pode ser creditado à melhoria na fiscalização pelo órgão gestor, a CETESB, ou à alguma reformulação em sua metodologia de cálculo. Sabe-se da importância da gestão adequada dos resíduos sólidos domésticos, já que a sua coleta, tratamento e

disposição inadequada podem ocasionar os mais diversos impactos, dentre eles os da poluição difusa.

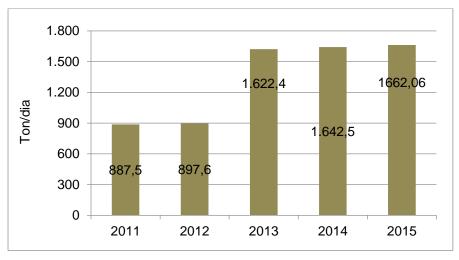


Figura 40 - Resíduo sólido urbano gerado: ton/dia

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

Todos os municípios da UGRHI 10 coletam e destinam satisfatoriamente os seus resíduos domésticos em aterros sanitários (Figuras 41 e 42). Ainda assim, podem ser observados diversos impactos negativos nos cursos fluviais, devido o descarte clandestino e errado em áreas verdes de domínio público ou mesmo nas ruas.

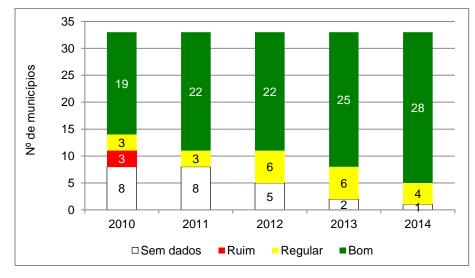


Figura 41 - Taxa de cobertura do serviço de coleta de resíduos em relação à população total: %

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

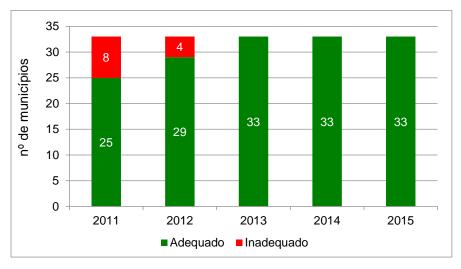


Figura 42 - IQR da instalação de destinação final de resíduo sólido urbano

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

4.7.4. Drenagem e manejo das águas pluviais urbanas

O crescimento urbano das cidades, que na maioria das vezes ocorre de forma desordenada, pode provocar impactos significativos na população e no ambiente que a cerca, conduzindo à deterioração de sua qualidade de vida e criando eventos indesejados como inundações e enchentes. A falta de planejamento para com os sistemas de drenagem em áreas urbanas dificulta o escoamento das águas das pluviais, que podem gerar prejuízos de dos mais diversos.

A drenagem e o manejo das águas pluviais urbanas devem ser feitos por meio de um Plano de Drenagem Municipal. Todos os municípios do Médio Tietê Superior possuem sistemas de drenagens de águas pluviais, mesmo que parciais, em suas áreas urbanas. Mas não possuem um cadastro para quantificar e qualificar as estruturas da micro drenagem como, bocas de lobo, número de poços de visitas, extensão, diâmetros das galerias, entre outros.

O principal problema que pôde ser observado em todos os municípios são as inundações que ocorrem nas áreas urbanas, devido principalmente à ocupação próxima a calha fluvial, e também em locais onde existe um mau dimensionamento das estruturas de macrodrenagem, como pontes e travessias.

4.8. GESTÃO DO TERRITÓRIO E DE ÁREA SUJEITAS A GERENCIAMENTO

4.8.1. Uso e Ocupação do Solo

Conforme observado nos parâmetros anteriores a UGRHI 10 tem uma vocação industrial, com uma diversidade de estabelecimentos comerciais, grandes centros urbanos e expressiva população. Fatores que afetam diretamente os recursos hídricos da bacia e os diversos serviços ecossistêmicos prestados pelas áreas naturais.

Conforme a análise espacial nota-se o predomínio das áreas com pastagens/campos antrópicos na UGRHI 10 (Figura 43), com 7.725,8 km² (60,1%). As áreas com pastagens concentram-se nas sub-bacias do MTI e BS. Outros usos de maior expressão na UGRHI 10 são as culturas e silvicultura com 1.695,3km² (13,3%) e 1.653,6km² (13%), respectivamente. As culturas se distribuem principalmente nos trechos baixo das sub-bacias MTI, BS, MS e MTM. As áreas da silvicultura concentram-se nos trechos alto das sub-bacias do MS e BS, e no trecho médio da sub-bacia do MTI.

Constatou-se que a cobertura de vegetação arbórea nativa (remanescente florestal e capoeiras) corresponde 11,4% distribuídos principalmente nas cabeceiras das sub-bacias do BS, As e MTS. A maior cobertura florestal observada nessas regiões pode estar relacionada com o relevo mais acidentado, que dificulta a implantação de outros usos do solo. O esperado é que pelo menos 20% da área da UGRHI 10 esteja protegida com cobertura de vegetação florestal, a fim de manter o mínimo dos serviços ecossistêmicos prestados destas áreas naturais (estabilidade microclimática, captação de carbono, proteção do solo, conectividade, passagem e abrigo de fauna, produção de umidade, entre outros).

As áreas urbanizadas estão distribuídas em 262,2 km² (2%) na UGRHI 10. A maior área urbana está localizada na sub-bacia do MS (municípios de Sorocaba e Votorantim), mas observa-se outras áreas urbanas distribuídas nas sub-bacias do MTM, MTS e MTI.

Legenda Uso do solo Pastagem/campo antropico Área urbanizad Capoeira Remanscente florestal Cerrado Vegetação de várzea 7480000 Cerradão Vegetação não identificada Culturas Corpo d'água мтм 🕏 Convenções Cartográficas Limite das Sub-bacias Projeção: UTM, Zona 23S Datum: SIRGAS 2000 Elaboração: Rafael Ocanha Lorca Neto te: Plano de Bacias da UGRHI 10. Ano 2008 140000 300000

Figura 43 - Mapa de uso e ocupação do solo da UGRHI 10

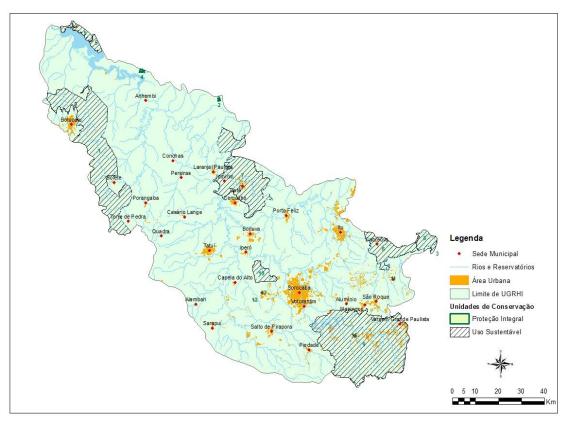
Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014

Em relação as áreas inundadas por reservatórios hidrelétricos nota-se que não houve implantação de novos reservatórios entre os anos de 2011 e 2015 (Figura 44). Na UGRHI 10 existem 7 aproveitamentos hidroelétricos com potencial total de 237,46Mw. As áreas inundadas abrangem os municípios de Salto, Itu, Pirapora de Bom Jesus, Botucatu, Anhembi, Conchas, Laranjal Paulista, Ibiúna, Piedade, São Roque, Mairinque, Votorantim, Alumínio e Piedade.

250,0 200,0 150,0 km^2 100,0 200,4 200,4 200,4 200,4 50.0 0,0 NF 2010 2011 2012 2013 2014

Figura 44 - Área inundada por reservatórios hidrelétricos na UGRHI 10

Fonte: Relatório de Situação dos Recursos Hídricos 2015 ano base 2014


4.8.2. Remanescente de Vegetação Natural e Áreas Protegidas

Ao longo de sua história, especialmente nas últimas décadas, o homem vem se apropriando e transformando o meio em que vive sem o devido cuidado e conhecimento sobre suas limitações, causando sucessivos problemas ambientais. Deste modo, torna-se cada vez mais necessário o desenvolvimento de projetos de planejamento ambiental que visem o desenvolvimento sustentável.

Uma ferramenta importante de planejamento é a criação de Unidades de Conservação conforme o tipo de uso e restrição exigidos em determinada região. O Sistema Nacional de Unidades de Conservação - SNUC, instituído pela Lei Nº 9.985/2000, determina 12 categorias de Unidades de Conservação – UCs, divididas em 2 grupos: as Unidades de Proteção Integral e as Unidades de Uso Sustentável.

Na UGRHI 10 existem atualmente 22 Unidades de Conservação (Figura 45). As UC com maior extensão de área são de categoria de uso sustentável, conforme a Lei Federal 9.985/2000. As UC APA Corumbataí Botucatu e Tejupá (Perímetro Botucatu), APA Cabreúva, APA Tietê e APA de Itupararanga cobrem importantes áreas de remanescentes florestais da UGRHI 10 e áreas de afloramento do Sistema Aquífero Guarani.

Figura 45 - Unidades de Conservação (UC) e Terras Indígenas (TI) existentes na UGRHI 10

Fonte: SSRH, 2016

Unidades de Conservação:

1 - APA Corumbataí Botucatu e Tejupá (Perímetro Botucatu); 2 - Estação Ecológica Ibicatu; 3 - APA Cajamar; 4 - Estação Ecológica Barreiro Rico; 5 - APA Corumbataí, Botucatu e Tejupá (Perímetro Corumbataí); 6 - APA Cabreúva; 7 - APA Tietê; 8 - APA Jundiaí; 9 - APA Ituparanga; 10 - Floresta Nacional de Ipanema; 11 - RPPN Sítio Pithon; 12 - RPPN Floresta Negra; 13 - RPPN Centro de Vivência com a Natureza; 14 - RPPN Meandros II; 15 - RPPN Meandros III; 16 - RPPN Meandros.

* Parque Natural Municipal da Cachoeira da Marta, Parque Natural Municipal Corredores de Biodiversidade, APA Piracicaba

* Parque Natural Municipal da Cachoeira da Marta, Parque Natural Municipal Corredores de Biodiversidade, APA Piracicaba Juqueri-Mirim II, Floresta Estadual de Botucatu, RPPN Cruz Preta e RPPN Entre Rios.

Foi utilizado o Invetário Florestal (IF, 2005) para a caracterização das fitofisionomias existentes na UGRHI 10. O estudo teve como objetivo efetuar o mapeamento e a avaliação dos remanescentes da vegetação natural do Estado de São Paulo para fins de estudos e controle da dinâmica de suas alterações. Na bacia do Sorocaba e Médio Tietê foram observadas as seguintes formações de vegetação com as suas respectivas descrições:

Cerrado

"Formação de fisionomia peculiar caracterizada por apresentar indivíduos de porte atrofiado (que podem atingir aproximadamente 6 metros de altura), enfezados,

88

de troncos retorcidos (tortuosos), cobertos por casca espessa e fendilhada, de

esgalhamento baixo e copas assimétricas, folhas na maioria grandes e grossas, algumas coriáceas, de caules e ramos encortiçados, com ausência de acúleos e

espinhos, bem como de epífitas e lianas."

"De um modo geral apresenta-se com três estratos: estrato superior, constituído

por árvores esparsas de pequeno porte (4 a 6 metros de altura); estrato intermediário,

formado por arbustos de 1 a 3 metros de altura e estrato inferior, constituído por

gramíneas e subarbustos, em geral até 50 cm de altura, pouco denso, deixando

espaços intercalares onde o solo pode se apresentar pouco ou desprovido de

revestimento."

Cerradão

"Formação vegetal constituída de três andares distintos: o primeiro apresenta

espécies ombrófilas rasteiras ou de pequeno porte; o segundo, arbustos e pequenas

formas arbóreas, constituindo sub-bosque, não ultrapassando a altura de 5 a 6 metros

de altura, de troncos menos tortuosos, não ramificados desde a base com

predominância de madeiras duras."

Mata

"Formação vegetal inteiramente dominada por árvores, de estrutura complexa,

apresentando grande riqueza de espécies, em três estratos distintos: estrato superior,

relativamente pouco denso, formado por indivíduos de 15 a 20 metros de altura, de

troncos cilíndricos, com espalhamento médio a alto; estrato intermediário, com alta

densidade, constituído por indivíduos de 10 a 15 metros com copas mais fechadas e

estrato inferior constituído por ervas e arbustos de até 3 metros de altura. Tais

formações apresentam, em função da umidade, maior ou menor riqueza em espécies

e presença de epífitas e lianas."

A classificação mata abrange as fitofisionomias: Floresta Estacional Semi-

decidual, Floresta Estacional em contato com savana, Floresta Ombrófila Densa

89

Montana, Floresta Ombrófila, Floresta Ombrófila Mista Montana, Floresta Ombrófila

em contato com savana.

Capoeira

"Vegetação secundária que sucede à derrubada das florestas, constituída

principalmente por indivíduos lenhosos de segundo crescimento, na maioria, da

floresta anterior e por espécies espontâneas que invadem as áreas devastadas,

apresentando porte desde arbustivo até arbóreo, porém, com árvores finas e

compactamente dispostas."

A classificação capoeira abrange as fitofisionomias: Floresta Estacional Semi-

decidual, Floresta Estacional em contato com savana, Floresta Ombrófila Densa

Montana, Floresta Ombrófila, Floresta Ombrófila Mista Montana, Floresta Ombrófila

em contato com savana.

Vegetação de Várzea

"Formação ribeirinha ou 'floresta ciliar' que ocorre ao longo dos cursos d'água,

apresentando um dossel emergente uniforme e estrato dominado e submata."

Na UGRHI 10 as fitofisionomias predominantes são a Floresta Ombrófila Densa

Montana (6.265 ha) e sua correspondente formação com Vegetação Secundária

(73.689ha); Floresta Estacional Semi-decidual (4.261 ha) e sua formação com

Vegetação Secundária (11.634 ha); Floresta Ombrófila em Contato Savana/Floresta

Ombrófila (1.072 ha) e sua correspondente formação de Vegetação Secundária

(20.591 ha). A vegetação remanescente (133.039 ha) está dividida em 6.559

fragmentos, sendo que deste total 4.446 (68%) apresentam superfície até 10 ha e 985,

até 20 ha. Observa-se, portanto, que 5.431 fragmentos (83%) apresentam superfície

entre 0 e 20 ha (Tabela 20).

Tabela 20 - Categorias das fitofisionomias observadas na UGRHI 10 e suas respectivas áreas, divididas por tamanhos de fragmentos florestais

Community of Manager	Área (ha)	0/		Número i	DE FRAGMENTOS P	OR CLASSE DE S U	PERFÍCIE		- Total
Categorias de Vegetação	AREA (ha)	%	< 10 ha	10-20 ha	20-50 ha	50-100 ha	100-200 ha	>200 ha	TOTAL
Floresta Estacional em Contato Savana / Floresta Estacional	2.504	0,2	25	16	22	6	1	3	73
Floresta Estacional Semidecidual	4.261	0,4	62	54	34	10	7	2	169
Floresta Ombrófila Densa Montana	6.265	0,5	31	16	18	8	4	6	83
Floresta Ombrófila em Contato Floresta Ombrófila / Floresta Ombrófila Mista Montana	6	0,0	1						1
Floresta Ombrófila em Contato Savana / Floresta Ombrófila	1.072	0,1	10	9	9	5	2		35
Formação Arbórea/Arbustiva-Herbácea em Região de Várzea	3.386	0,3	13	16	13	9	3	4	58
Savana	1.857	0,2	23	17	15	3	4	1	63
Savana Florestada	1.885	0,2	2	2	6	7	3	2	22
Vegetação Secundária da Floresta Estacional em Contato Savana / Floresta Estacional	5.888	0,5	319	79	43	8	4	3	456
Vegetação Secundária da Floresta Estacional Semidecidual	11.634	1,0	1.056	148	83	21	6	2	1.316
Vegetação Secundária da Floresta Ombrófila Densa Montana	73.689	6,1	1.411	347	290	110	69	54	2.281
Vegetação Secundária da Floresta Ombrófila em Contato Savana / Floresta Ombrófila	20.591	1,7	1.493	281	174	34	18	2	2.002
TOTAL	133.039	11,0	4.446	985	707	221	121	79	6.559

Fonte: IF 2005.

O município com maior área de vegetação remanescente é Ibiúna com uma área de 55.488 ha, correspondendo a 51% de sua superfície (Tabela 21). Constatase que a vegetação está dividida em 431 fragmentos, sendo 247, com área de até 10 ha e apenas 15 fragmentos com área superior a 200 ha. A seguir, vêm os municípios de Piedade - 28.388 ha (38,9%); Botucatu - 14.673 ha (9,8%); Cabreúva - 9.371 ha (35,1%) e São Roque - 9.095 ha (29,1%). Nos municípios localizados nas sub-bacias do Médio Tietê Médio e Médio Tietê Inferior a cobertura por vegetação florestal representam, em média, apenas 2,72% e 7,68% de suas áreas territoriais, respectivamente (Figura 46). Já no Alto Sorocaba e Médio Tietê Superior à média é de 37,35% e 22,76%, respectivamente.

Tabela 21 - Vegetações observadas nos municípios da UGRHI 10 e suas respectivas áreas, divididas por tamanhos de fragmentos florestais

MUNICÍPIO	ÁREA (ha)	VEG.NAT.	%	U.C. *	%	NÚMERO <10 ha				SE DE SU 100-200		TOTAL
Alambari	17.300	1.124	6,5	. ,		66	13	10	5			94
Alumínio	9.500	644	6,8			11	5	4	2	2		24
Anhembi	72.800	6.524	9,0			317	74	44	10	4	3	452
Araçariguama	13.800	4.300	31,2			180	30	20	15	7	2	254
Araçoiaba da Serra	28.300	2.668	9,4			233	28	24	3	2	1	291
Bofete	64.500	7.698	11,9			339	75	55	15	5	5	494
Boituva	24.800	1.024	4,1			132	18	8	1			159
Botucatu	149.600	14.673	9,8	34 1	0,0	370	106	79	36	25	10	626
Cabreúva	26.700	9.371	35,1			167	22	9	9	4	9	220
Capela do Alto	14.300	1.581	11,1			91	10	9		2	1	113
Cerquilho	12.600	155	1,2			44		1				45
Cesário Lange	19.000	450	2,4			108	5	1	1			115
Conchas	46.500	2.536	5,5			273	30	21	8	1		333
Ibiúna	108.800	55.488	51,0	25.775 ²	23,7	7 247	68	56	27	18	15	431
Ipero	16.500	2.771	16,8			54	23	5	4	5	1	92
ltu	64.200	6.324	9,9			230	71	42	16	3	3	365
Jumirim	5.500	155	2,8			32	4					36
Laranjal Paulista	38.700	758	2,0			132	10	6	1			149
Mairinque	21.400	4.981	23,3			119	33	27	5	5	5	194
Pereiras	23.600	460	1,9			97	2	5				104
Piedade	72.900	28.388	38,9	475 ²	0,7	138	61	70	35	15	14	333
Porangaba	27.600	1.378	5,0			169	16	11		1	1	198
Porto Feliz	56.900	1.774	3,1			189	41	12		1		243
Quadra	19.400	1.164	6,0			55	17	12	3	1		88
Salto de Pirapora	25.500	2.509	9,8			72	35	25	5	2	1	140
São Roque	31.300	9.095	29,1			187	34	38	18	16	9	302
Sarapuí	34.200	3.955	11,6			182	41	26	13	3	1	266
Sorocaba	44.300	2.463	5,6			100	28	14	8	5		155
Tatuí	52.100	2.588	5,0			251	53	23	3	1		331
Tietê	39.800	973	2,4			187	10	6	1			204
Torre de Pedra	6.900	736	10,7			45	23	4	2			74
Vargem Crande Pta.	2.900	688	23,7			21	5	6	2		1	35
Votorantim	17.700	2.000	11,3			22	11	15	2	2	3	55
TOTAL	1.209.900	181.396		26.284		4.860	1.002	688	250	130	85	7.015

^{*} Unidades de Conservação, gerenciadas pelo Instituto Florestal, total ou parcialmente localizadas na Unidade de Gerenciamento de Recursos Hídricos da Bacia Hidrográfica dos Rios Sorocaba e Médio Tietê.

1 - F.E. de Botucatu 2 - P.E. de Jurupará

Fonte: IF 2005.

Diversos estudos apontam o papel importante das vegetações naturais na produção de serviços ambientais. Elas são importantes, principalmente ao longo dos rios e ao redor de lagos, pois exercem uma função protetora sobre os recursos naturais bióticos e abióticos, trazendo uma série de benefícios ao ecossistema.

Além das funções de proteção do solo e dos cursos fluviais, as áreas com vegetação florestal também desempenham a função de estabilidade microclimática, atenuação da poluição atmosférica, prevenção contra a ação do vento e ruído, captação de carbono e fornecimento de oxigênio, recreação e educação, produção de biomassa e fornecimento de energia e produtos florestais, proteção da fauna e flora (KOBYAMA, 1999).

A sua função de proteção e permeabilidade do solo, quanto à infiltração da água pluvial, é essencial para a recarga do lençol freático. Segundo Borges *et al.* (2005) ao realizarem um estudo de permeabilidade na bacia, verificaram que nas áreas de florestas houve infiltração 94,81 mm.h-¹. Ao comparar áreas com outros tipos de cobertura florestal, houve uma redução de 24% em áreas com eucaliptos, 64% em áreas de cultivo de cana-de-açúcar e 91% em áreas de pastagem.

These Christic Constitution of Constitution of

Figura 46 - Mapa de fitofisionomias existentes na UGRHI 10.

Fonte: IF, 2005

4.8.3. Áreas de Preservação Permanente

Conforme o levantamento realizado pelo IPT no Plano de Bacias da UGRHI 10 (IPT, 2008) a bacia apresenta um elevado déficit de vegetação natural ao longo das faixas de APP no entorno de rios, córregos, lagos, lagoas e nascentes, chegando à 86,2% (Tabela 22). A falta de vegetação ao longo dessas áreas pode resultar em diversos problemas ambientais como: falta de conectividade entre fragmentos florestais, contaminação dos corpos d'água por diversos produtos químicos, erosão das margens, eutrofização das águas, compactação do solo, assoreamento, entre outros. Nos locais com vegetação natural, são áreas que, em sua grande maioria, estão compostas por cobertura vegetal caracterizada por formações florestais secundárias em estágio inicial e médio de regeneração, com elementos arbóreos típicos de ambientes úmidos.

Tabela 22 - Áreas de Preservação Permanente na UGRHI 10

Sub-	АРР									
Bacias	Área total (ha)		n vegetação al (ha)	Área com déficit de vegetação natural (ha)						
SB1-MTI	15.999,2	1.772,21	11,08%	14.226,99	88,92%					
SB2-MTM	5.238,51	261,25	4,99%	4.977,26	95,01%					
SB3-BS	10.438,91	1.968,09	18,85%	8.470,82	81,15%					
SB4-MS	4.703,97	658,91	14,01%	4.045,06	85,99%					
SB5-MTS	7.295,15	1.013,88	13,90%	6.281,27	86,10%					
SB6-AS	4.435,82	1.000,77	22,56%	3.435,05	77,44%					
UGRHI 10	48.111,56	6.675,74	13,88%	41.435,82	86,12%					

Fonte: IPT, 2008.

4.8.4. Áreas Suscetíveis a Erosão, Escorregamento e/ou Assoreamento

Na UGRHI 10 (Figura 47) foram cadastradas 80 erosões lineares urbanas (19 de ravinas e 61 de boçorocas) e 4228 erosões rurais sendo (1493 de ravinas e 2735 boçorocas). As erosões ocorrem prioritariamente em áreas de baixa/ muito alta suscetibilidade a erosão (classe IV e I). Os seis municípios que apresentam o maior número de ocorrências de erosões são: Conchas(418), Porto Feliz (280), Anhembi (251), Bofete(249), Sarapuí (219) e Tietê (217). Segundo o mesmo estudo 28 municípios da UGRHI 10 há apresentaram eventos de inundação/enchente em sua área urbana.

Todate location locat

Figura 47 - Mapa de municípios com maior concentração de processos erosivos na UGRHI 10

Fonte: DAEE, 2012.

A ação erosiva da chuva ocorre devido ao impacto direto das gostas no solo desprotegido. Parte da camada superficial é desagregada e transportada pelo fluxo de água, quando a permeabilidade do solo atinge o grau de saturação. O acúmulo de água ocorre devido à compactação do solo conforme as gotas de chuva vão atingindo o chão. O impacto direto das gotas de chuva leva o selamento da camada superficial, o que reduz a taxa de infiltração da água e aumenta o volume da enxurrada. Quando os plantios e estradas seguem o sentido da vertente da bacia até a calha principal de um córrego, é potencializada a ação erosiva da chuva e o carreamento de toda a camada superficial do solo (ZOCCAL, 2007).

Devido ao planejamento inadequado de estradas vicinais, principalmente em regiões com o relevo mais acidentado, o traçado acaba seguindo o sentido do declive, ou margeando os cursos de água. Essas estradas atuam como calhas para a condução de água pluvial e deposição dos sedimentos transportados até as áreas mais baixas.

O resultado do carreamento de todo o material do solo está diretamente relacionado com assoreamento e contaminação dos corpos hídricos. Devido à compactação do solo, todo o material transportado pela chuva é depositado em um

curso d'água ou reservatório, resultando no assoreamento e contaminação da água, tanto por sedimentos em suspensão quanto por agroquímicos solubilizados no fluxo do escoamento.

4.8.5. Áreas Suscetíveis a Enchentes, Inundação e/ou alagamento

Em relação ao número de ocorrências de inundações e/ou alagamento, houve um aumento significativo em relação ao período de 2013/2014, onde o mesmo passou de 6 para 27 (Figura 48). Na UGRHI 10 foi registrado que em 27 municípios já ocorreu um evento de enchente/inundação em algum determinado período.

As enchentes/inundações normalmente ocorrem em áreas urbanas, devido à problemas nos sistemas de drenagens das águas urbanas, muitas vezes subdimensionados para eventos de chuvas mais intensas. A expansão das manchas urbanas, que impermeabilizam os solos, também contribuem para o aumento do volume de águas das chuvas até os rios e córregos.

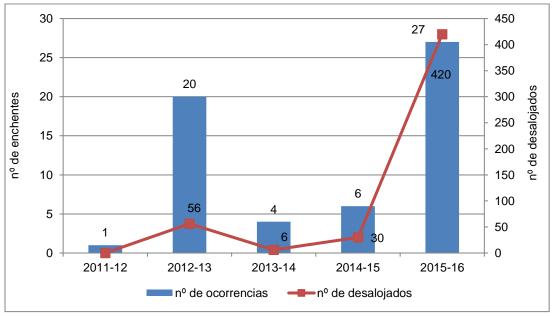


Figura 48 - Número de enchentes e de desalojados na UGRHI 10

Fonte: SSRH, 2016.

4.8.6. Poluição Ambiental

O aumento do número de áreas contaminadas/ano entre os anos de 2011 e 2015 teve uma tendência de aumento (Figura 49). Comparando com o número de

áreas remediadas há uma diferença expressiva. Os municípios que apresentaram o maior número de áreas foram Sorocaba (46), Itu (25), São Roque (11), Tietê (8), Tatuí (7), Porto Feliz (7) e Mairinque (7). Os postos de combustíveis representam grande parcela dessas áreas contaminadas.

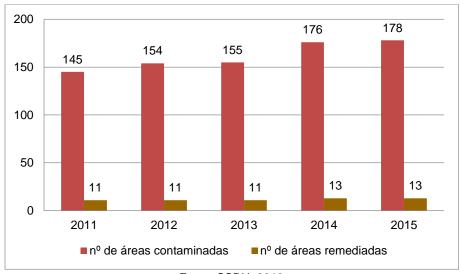


Figura 49 - Número de áreas contaminadas e remedias na UGRHI 10 entre os anos de 2011 e 2015

Fonte: SSRH, 2016.

Em relação ao número de ocorrências de derrame de produtos químicos no solo/água não foi possível identificar uma tendência durante o período analisado. Mas verifica-se que todo o ano acorrem ao menos 4 ocorrências e nos últimos três anos as ocorrências só aumentaram. Em todas as ocorrências foram atendidas pela CETESB.

Figura 50 - Número de ocorrências/atendimentos de derrame de produtos químicos no solo/água na UGRHI 10

Fonte: SSRH, 2016.

A classificação das áreas contaminadas foi estabelecida pelo Regulamento da Lei 13.577/2009, aprovado pelo Decreto 59.263/2013, que estabelece as seguintes classes:

- Área Contaminada sob Investigação (ACI): área onde foram constatadas por meio de investigação confirmatória concentrações de contaminantes que colocam, ou podem colocar, em risco os bens a proteger;
- Área Contaminada com Risco Confirmado (ACRi): área onde foi constatada, por meio de investigação detalhada e avaliação de risco, contaminação no solo ou em águas subterrâneas, a existência de risco à saúde ou à vida humana, ecológico, ou onde foram ultrapassados os padrões legais aplicáveis;
- Área Contaminada em Processo de Remediação (ACRe): área onde estão sendo aplicadas medidas de remediação visando a eliminação da massa de contaminantes ou, na impossibilidade técnica ou econômica, sua redução ou a execução de medidas contenção e/ou isolamento;
- Área em Processo de Monitoramento para Encerramento (AME): área na qual não foi constatado risco ou as metas de remediação foram atingidas após implantadas as medidas de remediação, encontrando-se em processo de monitoramento para verificação da manutenção das concentrações em níveis aceitáveis;

• Área Reabilitada para o Uso Declarado (AR): área, terreno, local, instalação, edificação ou benfeitoria anteriormente contaminada que, depois de submetida às medidas de intervenção, ainda que não tenha sido totalmente eliminada a massa de contaminação, tem restabelecido o nível de risco aceitável à saúde humana, ao meio ambiente e a outros bens a proteger;

• Área Contaminada Crítica: são áreas contaminadas que, em função dos danos ou riscos, geram risco iminente à vida ou saúde humana, inquietação na população ou conflitos entre os atores envolvidos, exigindo imediata intervenção pelo responsável ou pelo poder público, com necessária execução diferenciada quanto à intervenção, comunicação de risco e gestão da informação;

• Área Contaminada em Processo de Reutilização (ACRu): área contaminada onde se pretende estabelecer um uso do solo diferente daquele que originou a contaminação, com a eliminação, ou a redução a níveis aceitáveis, dos riscos aos bens a proteger, decorrentes da contaminação.

Na UGRHI 10 foi constatada que 37 áreas com risco confirmado (ACRi) e ainda apenas 13 áreas reabilitadas (Tabela 23). No Estado de São Paulo a UGRHI 10 fica em quinto lugar quanto ao total de áreas contaminadas, ficando atrás apenas do Alto Tietê, Paraíba do Sul, Baixada Santista e PCJ.

Tabela 23 - Número de áreas contaminadas nas UGRHI do Estado de São Paulo

UGRHI			Class	ificação			
	Reabilitada para uso declarado (AR)	Em processo de remediação (ACRe)	Em processo de monitoramento para encerramento (AME)	Contaminada sob investigação (ACI)	em processo		Total
1 Mantiqueira	0	2	8	3	0	0	13
2 Paraíba do Sul	9	120	53	82	0	16	280
3 Litoral Norte	8	18	33	2	0	3	64
4 Pardo	23	9	38	10	0	5	85
5 Piracicaba/Capivari/Jundiaí	72	188	182	199	5	115	761
6 Alto Tietê	396	868	639	532	82	308	2.825
7 Baixada Santista	38	87	35	28	0	49	237
8 Sapucaí/Grande	7	10	23	11	1	5	57
9 Mogi Guaçú	11	33	36	27	0	22	129
10 Sorocaba/Médio Tietê	13	44	32	48	0	37	174
11 Ribeira de Iguape/Litoral Sul	1	32	6	21	0	11	71
12 Baixo Pardo/Grande	7	10	19	11	0	0	47
13 Tietê/Jacaré	19	29	39	8	0	8	103
14 Alto Paranapanema	7	41	45	24	0	9	126
15 Turvo/Grande	41	36	58	16	0	8	159
16 Tietê/Batalha	8	17	20	9	0	6	60
17 Médio Paranapanema	9	8	3	1	0	4	25
18 São José dos Dourados	5	5	12	0	0	1	23
19 Baixo Tietê	2	23	21	10	0	6	62
20 Aguapeí	2	16	2	6	0	0	26
21 Peixe	1	9	2	11	0	3	26
22 Pontal do Paranapanema	1	12	1	8	0	1	23
Total	680	1.617	1.307	1.067	88	617	5.376

Fonte: CETESB, 2016.

4.9. AVALIAÇÃO DO PLANO DE BACIA HIDROGRÁFICA

Ao fazer a análise da implantação das ações propostas no Plano de Bacia da UGRHI 10 (ano 2008) constatou-se que diversas medidas propostas estão sendo realizadas, mas nenhuma concluída. Conforme a Tabela 24 foram propostas 14 metas para conclusão até o ano de 2019, com a necessidade de investir mais de 780 milhões de reais durante o período 2008 e 2019.

Tabela 24 - Número de áreas contaminadas nas UGRHI do Estado de São Paulo

	META		entos (R\$ 1	\$ 1.000,00)	
	me io	2008/2011	2012/2015	2016/2019	
1.	Alcançar e/ou manter 100% na coleta de esgoto urbano	13.538,17	36.291,45	16.291,45	
2.	Alcançar e/ou manter 100% de esgoto urbano tratado	246.196,03	36.291,45	16.291,45	
3.	Implantar e/ou ampliar e/ou adequar e/ou recuperar sistemas de destinação final de resíduos sólidos domiciliares, considerando-se tempo de vida útil de 10 anos, adotando-se dados da geração de lixo observados em 2006 (conforme a CETESB), para:				
	05 cidades com IQR <6.0 (total geral de 50 t/dia em 2005) – situação atual "Inadequada" – população urbana 10.200-43.200 hab (SEADE – 2007)	14.137,93	*	*	
3b.	2007)	•	16.688,73	•	
3c.	21 cidades com IQR >8,1 (total geral de 297 t/dia em 2005) – situação atual "Adequada" – população urbana 1.200-146.300 hab (SEADE – 2007)	•		10.688,73	
3d.	Sorocaba (total de 396 t/dia em 2005) – situação atual "Adequada" – população urbana 578.375 (SEADE – 2007)	4.600,00	*	*	
4.	Alcançar e/ou manter a universalização (100%) na distribuição de água	121.803,18	36.382,41	24.382,41	
5.	Alcançar e/ou manter universalização (100%) no tratamento de água	2.879,99	9.072,51	1.072,51	
6.	Elaborar Programa de Conservação de Água para os municípios da Bacia, o qual permita efetivar a redução de perdas de água (físicas e não físicas) dos níveis observados atualmente (perdas de até 61,1%) para taxas máximas de 25%	1.229,97	545,02	545,02	
7.	Combater os problemas de erosão urbana de médio e grande porte (boçorocas), corrigindo 83 feições já cadastradas na Bacia, na taxa média de 06 erosões/ano	1.958,36	23.930,82	8.930,82	
8.	Elaborar Planos Diretores de Macrodrenagem Urbana em todas as cidades com mais de 30.000 habitantes na zona urbana (SEADE – 2007), da seguinte forma:				
8a.	08 cidades de 10.000 a 30.000 hab	•	833,01	*	
8b.	08 cidades de 30.000 a 50.000 hab	•	1.333,01		
8c.	02 cidades de 50.000 a 100.000 hab	•		833,01	
8d.	04 cidades de 100.000 a 150.000 hab	399,60	*	*	
8e.	Sorocaba (553.642 hab urbanos)	400,00	*	*	
9.	Áreas Contaminadas: Estudos para delimitação de áreas de restrição e controle do uso de águas subterrâneas em 15 locais, registrados pela CETESB, no que diz respeito à qualidade ou quantidade dos recursos hídricos, nos termos e métodos estabelecidos pela Deliberação CRH nº 052 (de 15.04.2005)	1.393,64	*	*	
	Diminuir o déficit atual de 41.435,82 ha nas APPs (Áreas de Preservação Permanente) em 30% (12.430,75 ha), adotando método de plantio de 50% da área (6.215,38 ha), associado a outras técnicas, da seguinte forma:				
	1.775,82 ha até o ano limite considerado (2010)	7.031,73	*	*	
	2.219,78 ha até o ano limite considerado (2015)	•	21.116,63	*	
	2.219,78 ha até o ano limite considerado (2019)	•	*	48.685,00	
	Diminuir o déficit atual de 130.365,88 ha de vegetação de Reserva Legal em 10% (13.036,59 ha), adotando o método de plantio de 50% da área (6.518,29 ha), associado a outras técnicas, da seguinte forma:				
	1.862,37 ha até o ano limite considerado (2010)	5.578,67	*	*	
	2.327,96 ha até o ano limite considerado (2015)	•	23.224,16	*	
	. 2.327,96 ha até o ano limite considerado (2019)	*	*	23.224,16	
	Recompor, adensar e operar rede de monitoramento hidrológico (fluviometria, pluviometria, nível d'água, aqūíferos, meteorologia, sedimentometria)	3.081,89	1.934,06	934,06	
	Preparar e manter atualizadas as bases técnicas sistematizadas dos vários setores ou campos de interesse aos recursos hidricos (saneamento, cobrança, enquadramento, sócio-economia, biodiversidade, águas subterrâneas, quantidade, qualidade, etc) e revisão periódica do planejamento de recursos hidricos (plano de bacia; indicadores quantitativos; relatórios de situação)		5.782,91	4.782,91	
14.	Adotar e manter permanentemente atualizados os mecanismos de pesquisa e capacitação tecnológica e educação ambiental para todos os segmentos do CBH	3.620,23	3.636,25	3.329,88	
	TOTAL POR PERIODO DE ANOS (R\$ 1.000,00)	436.033,57	212.067,42	132.423,05	
	TOTAL GERAL (R\$ 1.000,00)	780.825,00			

Fonte: IPT, 2008.

Conforme a "Meta 1" e "Meta 2" até o ano de 2019 as ações devem resultar em 100% da coleta e tratamento de esgoto urbano. No ano de 2015 a coleta de esgoto atendeu 89% dos efluentes urbanos, restando ainda 11% sem coleta. Enquanto que o tratamento alcançou 75,5% dos efluentes gerados. Diversas obras estão em andamento e algumas já foram concluídas como a construção da ETE dos municípios de Anhembi (Sede), Conchas (Sede), Boituva (Pau d´Alho e Campos de Boituva), Cerquilho (Capuava), entre outras. Mas ainda há necessidade de investimentos para alcançar a meta de 100%. Os municípios Sarapuí, Mairinque, Araçariguama e São Roque ainda não possuem sistemas de tratamentos de seus efluentes domésticos.

Na "Meta 3" ficou estabelecido que 100% dos municípios da UGRHI 10 devem destinar resíduos sólidos urbanos de forma correta em aterros sanitários. No ano de 2008 apenas 21 cidades estavam adequadas, confome o IQR, estabelecido pela CETESB. Já no ano de 2016 constotou-se que todos os muncípios da UGRHi 10 estão classificados como "Adequados" pelo IQR. Muitos muncípios (50% da UGRHI 10) encontraram uma solução destinando os seus resíduos à aterros particulares, como

exemplo: Conchas, Porangaba, Boituva, Jumirim, Porto Feliz, Tietê, Capela do Alto, Cesário Lange, Laranjal Paulista, Sarapuí, Iperó, Mairinque, Sorocaba, Araçariguama, São Roque e Vargem Grande Paulista.

As "Metas 4" e "Metas 5" estabelecem a universalização (100%) da distribuição e tratamento da águas para abastecimento público. Em 2015 o índice de atendimento de água alcançou 89,2% da população mas o atendimento ainda não alcançou 50% nos municípios de Quadra, Ibiúna e Piedade. Tratamento das águas A "Meta 6" estabelece que o índice de perdas das águas para abstecimento público deve alcançar as taxas máximas de 25%, por meio de programas de conservação das águas. Até o ano de 2014 a média do índice de perdas era de 33,6% na UGRHI 10, mas ainda há necessidade de mais investimentos para o efetivo controle de perdas. Ainda tem 8 municípios que estão classificados como "ruim", cujas perdas alcançam mais de 50% das águas para o abastecimento público.

BIBLIOGRAFIA

RELATORIO DE SITUAÇÃO

BORGES, M.J. et al. Reflorestamento compensatório com vistas à retenção de água no solo da bacia hidrográfica do Córrego Palmital, Jaboticabal, SP. Revista Scientia Florestalis, Piracicaba, v., n.69, p. 93-103, dez. 2005.

BRASIL. *Lei Nº 9.985, de 18 de julho de 2000*. Regulamenta o art. 225 da Constituição Federal, Institui o Sistema Nacional de Conservação da Natureza e dá outras providencias. Disponível em:

http://www.planalto.gov.br/ccivil_03/leis/l9985.htm. Acesso em: 10 dez. 2016.

IG INSTITUTO GEOLÓGICO. CETESB – Companhia de Tecnologia de Saneamento Ambiental. DAEE – Departamento de Águas e Energia Elétrica. **Mapeamento da vulnerabilidade e risco de poluição das águas subterrâneas no Estado de São Paulo**. São Paulo: IG/ Cetesb/ DAEE, 1997. 2 v. mapas. (Série Documentos).

KOBIYAMA, M. Manejo de bacias hidrográficas: conceitos básicos. In: *CURSO de Manejo de bacias hidrográficas sob a perspectiva florestal*. Curitiba: FUPEF, 1999. P. 29-31. Apostila.

SÃO PAULO (Estado). Companhia Ambiental do Estado de São Paulo. **Relatório de qualidade das águas interiores no estado de São Paulo 2016**. São Paulo, 2016. (Serie Relatórios). Disponível em: ">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios>">http://www.cetesb.sp.gov.br/agua/aguas-superficiais/aguas-superficiais/aguas-superficiais/aguas-superficiais/aguas-superficiais/aguas-superficiais/aguas-superficiais/aguas-superficiais/aguas-superficiais/ag

SÃO PAULO (Estado). Companhia Ambiental do Estado de São Paulo. **Programa de Monitoramento**. 2016. Disponível em:

<Http://areascontaminadas.cetesb.sp.gov.br/wpcontent/uploads/sites/45/2013/11/text o-explicativo.pdf >. Acesso em: 10 dez. 2016.

SÃO PAULO (Estado). Companhia Ambiental do Estado de São Paulo. **Relatório de Qualidade das Águas Subterrâneas do Estado de São Paulo**. 2012. Disponível em http://www.cetesb.sp.gov.br/ Acesso em: 10 novembro 2016. Departamento de Águas e Energia do Estado de São Paulo.

SÃO PAULO (Estado). Companhia Ambiental do Estado de São Paulo, Departamento de Águas e Energia Elétrica. **Águas subterrâneas no Estado de São Paulo: Diretrizes de Utilização e Proteção**. São Paulo: DAEE/LEBAC, 2013.

SÃO PAULO (Estado). **Mapa de águas subterrâneas do Estado de São Paulo: escala 1:1.000.000 : nota explicativa** / [coordenação geral Gerôncio Rocha]. - São Paulo: DAEE - Departamento de Águas e Energia Elétrica: IG - Instituto Geológico: IPT - Instituto de Pesquisas Tecnológicas do Estado de São Paulo: CPRM - Serviço Geológico do Brasil, 2005.

SÃO PAULO (Estado). Instituto Geológico do Estado de São Paulo, Companhia Ambiental do Estado de São Paulo, Departamento de Águas e Energia Elétrica. **Mapeamento da vulnerabilidade e risco de poluição das águas subterrâneas no Estado de São Paulo**. São Paulo: IG/ Cetesb/ DAEE, 1997. 2 v. mapas. (Série Documentos).

SÃO PAULO (Estado). Plano de Desenvolvimento e Proteção Ambiental da Área de Afloramento do Sistema Aquífero Guarani no Estado de São Paulo. São Paulo. Instituto de Pesquisas Tecnológicas do Estado de São Paulo; Coordenadoria de Planejamento Ambiental.2011.

SÃO PAULO (Estado). Secretaria do Estado de Meio Ambiente. Instituto Florestal. *Inventário florestal da vegetação natural do Estado de São Paulo.* São Paulo, SP: Instituto Florestal, 2005.

ROCHA G. A. O grande manancial do Cone Sul. **Estudos Avançados.** São Paulo, vol. 11, n. 30, 1997.

ZOCCAL, J. C. Soluções cadernos de estudos em conservação do solo e água. Presidente Prudente: CODASP, 2007. 62p.

Anexos

DELIBERAÇÃO CBH-SMT nº 351, de 20 de dezembro de 2016. Refere-se a aprovação da Deliberação CBH-SMT 351, de 20 de dezembro de 2016_Relatório I do Plano de Bacia